353
Wave Optics
10.2 HUYGENS PRINCIPLE
We would first define a wavefront: when we drop a small stone on a calm
pool of water, waves spread out from the point of impact. Every point on
the surface starts oscillating with time. At any instant, a photograph of
the surface would show circular rings on which the disturbance is
maximum. Clearly, all points on such a circle are oscillating in phase
because they are at the same distance from the source. Such a locus of
points, which oscillate in phase is called a wavefront; thus a wavefront
is defined as a surface of constant phase. The speed with which the
wavefront moves outwards from the source is called the speed of the
wave. The energy of the wave travels in a direction perpendicular to the
wavefront.
If we have a point source emitting waves uniformly in all directions,
then the locus of points which have the same amplitude and vibrate in
the same phase are spheres and we have what is known as a spherical
wave as shown in Fig. 10.1(a). At a large distance from the source, a
DOES LIGHT TRAVEL IN A STRAIGHT LINE?
Light travels in a straight line in Class VI; it does not do so in Class XII and beyond! Surprised,
aren’t you?
In school, you are shown an experiment in which you take three cardboards with
pinholes in them, place a candle on one side and look from the other side. If the flame of the
candle and the three pinholes are in a straight line, you can see the candle. Even if one of
them is displaced a little, you cannot see the candle. This proves, so your teacher says,
that light travels in a straight line.
In the present book, there are two consecutive chapters, one on ray optics and the other
on wave optics. Ray optics is based on rectilinear propagation of light, and deals with
mirrors, lenses, reflection, refraction, etc. Then you come to the chapter on wave optics,
and you are told that light travels as a wave, that it can bend around objects, it can diffract
and interfere, etc.
In optical region, light has a wavelength of about half a micrometre. If it encounters an
obstacle of about this size, it can bend around it and can be seen on the other side. Thus a
micrometre size obstacle will not be able to stop a light ray. If the obstacle is much larger,
however, light will not be able to bend to that extent, and will not be seen on the other side.
This is a property of a wave in general, and can be seen in sound waves too. The sound
wave of our speech has a wavelength of about 50cm to 1 m. If it meets an obstacle of the
size of a few metres, it bends around it and reaches points behind the obstacle. But when it
comes across a larger obstacle of a few hundred metres, such as a hillock, most of it is
reflected and is heard as an echo.
Then what about the primary school experiment? What happens there is that when we
move any cardboard, the displacement is of the order of a few millimetres, which is much
larger than the wavelength of light. Hence the candle cannot be seen. If we are able to move
one of the cardboards by a micrometer or less, light will be able to diffract, and the candle
will still be seen.
One could add to the first sentence in this box: It learns how to bend as it grows up
!
FIGURE 10.1 (a) A
diverging spherical
wave emanating from
a point source. The
wavefronts are
spherical.