Physics
310
them. The path is called a ray of light, and a bundle of such rays
constitutes a beam of light.
In this chapter, we consider the phenomena of reflection, refraction
and dispersion of light, using the ray picture of light. Using the basic
laws of reflection and refraction, we shall study the image formation by
plane and spherical reflecting and refracting surfaces. We then go on to
describe the construction and working of some important optical
instruments, including the human eye.
PARTICLE MODEL OF LIGHT
Newton’s fundamental contributions to mathematics, mechanics, and gravitation often blind
us to his deep experimental and theoretical study of light. He made pioneering contributions
in the field of optics. He further developed the corpuscular model of light proposed by
Descartes. It presumes that light energy is concentrated in tiny particles called corpuscles.
He further assumed that corpuscles of light were massless elastic particles. With his
understanding of mechanics, he could come up with a simple model of reflection and
refraction. It is a common observation that a ball bouncing from a smooth plane surface
obeys the laws of reflection. When this is an elastic collision, the magnitude of the velocity
remains the same. As the surface is smooth, there is no force acting parallel to the surface,
so the component of momentum in this direction also remains the same. Only the component
perpendicular to the surface, i.e., the normal component of the momentum, gets reversed
in reflection. Newton argued that smooth surfaces like mirrors reflect the corpuscles in a
similar manner.
In order to explain the phenomena of refraction, Newton postulated that the speed of
the corpuscles was greater in water or glass than in air. However, later on it was discovered
that the speed of light is less in water or glass than in air.
In the field of optics, Newton – the experimenter, was greater than Newton – the theorist.
He himself observed many phenomena, which were difficult to understand in terms of
particle nature of light. For example, the colours observed due to a thin film of oil on water.
Property of partial reflection of light is yet another such example. Everyone who has looked
into the water in a pond sees image of the face in it, but also sees the bottom of the pond.
Newton argued that some of the corpuscles, which fall on the water, get reflected and some
get transmitted. But what property could distinguish these two kinds of corpuscles? Newton
had to postulate some kind of unpredictable, chance phenomenon, which decided whether
an individual corpuscle would be reflected or not. In explaining other phenomena, however,
the corpuscles were presumed to behave as if they are identical. Such a dilemma does not
occur in the wave picture of light. An incoming wave can be divided into two weaker waves
at the boundary between air and water.
9.2 REFLECTION OF LIGHT BY SPHERICAL MIRRORS
We are familiar with the laws of reflection. The angle of reflection (i.e., the
angle between reflected ray and the normal to the reflecting surface or
the mirror) equals the angle of incidence (angle between incident ray and
the normal). Also that the incident ray, reflected ray and the normal to
the reflecting surface at the point of incidence lie in the same plane
(Fig. 9.1). These laws are valid at each point on any reflecting surface
whether plane or curved. However, we shall restrict our discussion to the
special case of curved surfaces, that is, spherical surfaces. The normal in