277
Electromagnetic
Waves
same (independent of wavelength) to within a few metres per second, out
of a value of 3×10
8
m/s. The constancy of the velocity of em waves in
vacuum is so strongly supported by experiments and the actual value is
so well known now that this is used to define a standard of length.
Namely, the metre is now defined as the distance travelled by light in
vacuum in a time (1/c) seconds = (2.99792458 × 10
8
)
–1
seconds. This
has come about for the following reason. The basic unit of time can be
defined very accurately in terms of some atomic frequency, i.e., frequency
of light emitted by an atom in a particular process. The basic unit of length
is harder to define as accurately in a direct way. Earlier measurement of c
using earlier units of length (metre rods, etc.) converged to a value of about
2.9979246 × 10
8
m/s. Since c is such a strongly fixed number, unit of
length can be defined in terms of c and the unit of time!
Hertz not only showed the existence of electromagnetic waves, but
also demonstrated that the waves, which had wavelength ten million times
that of the light waves, could be diffracted, refracted and polarised. Thus,
he conclusively established the wave nature of the radiation. Further, he
produced stationary electromagnetic waves and determined their
wavelength by measuring the distance between two successive nodes.
Since the frequency of the wave was known (being equal to the frequency
of the oscillator), he obtained the speed of the wave using the formula
v =
νλ
and found that the waves travelled with the same speed as the
speed of light.
The fact that electromagnetic waves are polarised can be easily seen
in the response of a portable AM radio to a broadcasting station. If an
AM radio has a telescopic antenna, it responds to the electric part of the
signal. When the antenna is turned horizontal, the signal will be greatly
diminished. Some portable radios have horizontal antenna (usually inside
the case of radio), which are sensitive to the magnetic component of the
electromagnetic wave. Such a radio must remain horizontal in order to
receive the signal. In such cases, response also depends on the orientation
of the radio with respect to the station.
Do electromagnetic waves carry energy and momentum like other
waves? Yes, they do. We have seen in chapter 2 that in a region of free
space with electric field E, there is an energy density (
ε
0
E
2
/2). Similarly,
as seen in Chapter 6, associated with a magnetic field B is a magnetic
energy density (B
2
/2µ
0
). As electromagnetic wave contains both electric
and magnetic fields, there is a non-zero energy density associated with
it. Now consider a plane perpendicular to the direction of propagation of
the electromagnetic wave (Fig. 8.4). If there are, on this plane, electric
charges, they will be set and sustained in motion by the electric and
magnetic fields of the electromagnetic wave. The charges thus acquire
energy and momentum from the waves. This just illustrates the fact that
an electromagnetic wave (like other waves) carries energy and momentum.
Since it carries momentum, an electromagnetic wave also exerts pressure,
called radiation pressure.
If the total energy transferred to a surface in time t is U, it can be shown
that the magnitude of the total momentum delivered to this surface (for
complete absorption) is,
(8.12)