Electromagnetic
Induction
205
is not merely of theoretical or academic interest but also
of practical utility. Imagine a world where there is no
electricity – no electric lights, no trains, no telephones and
no personal computers. The pioneering experiments of
Faraday and Henry have led directly to the development
of modern day generators and transformers. Today’s
civilisation owes its progress to a great extent to the
discovery of electromagnetic induction.
6.2 THE EXPERIMENTS OF FARADAY AND
HENRY
The discovery and understanding of electromagnetic
induction are based on a long series of experiments carried
out by Faraday and Henry. We shall now describe some
of these experiments.
Experiment 6.1
Figure 6.1 shows a coil C
1
* connected to a galvanometer
G. When the North-pole of a bar magnet is pushed
towards the coil, the pointer in the galvanometer deflects,
indicating the presence of electric current in the coil. The
deflection lasts as long as the bar magnet is in motion.
The galvanometer does not show any deflection when the
magnet is held stationary. When the magnet is pulled
away from the coil, the galvanometer shows deflection in
the opposite direction, which indicates reversal of the
current’s direction. Moreover, when the South-pole of
the bar magnet is moved towards or away from the
coil, the deflections in the galvanometer are opposite
to that observed with the North-pole for similar
movements. Further, the deflection (and hence current)
is found to be larger when the magnet is pushed
towards or pulled away from the coil faster. Instead,
when the bar magnet is held fixed and the coil C
1
is
moved towards or away from the magnet, the same
effects are observed. It shows that it is the relative
motion between the magnet and the coil that is
responsible for generation (induction) of electric
current in the coil.
Experiment 6.2
In Fig. 6.2 the bar magnet is replaced by a second coil
C
2
connected to a battery. The steady current in the
coil C
2
produces a steady magnetic field. As coil C
2
is
* Wherever the term ‘coil’ or ‘loop’ is used, it is assumed that they are made up of
conducting material and are prepared using wires which are coated with insulating
material.
FIGURE 6.1 When the bar magnet is
pushed towards the coil, the pointer in
the galvanometer G deflects.
Josheph Henry [1797 –
1878] American experimental
physicist, professor at
Princeton University and first
director of the Smithsonian
Institution. He made important
improvements in electro-
magnets by winding coils of
insulated wire around iron
pole pieces and invented an
electromagnetic motor and a
new, efficient telegraph. He
discoverd self-induction and
investigated how currents in
one circuit induce currents in
another.
JOSEPH HENRY (1797 – 1878)