PHYSICS370
sinusoidal wave will be generated propagating
in air along the length of the pipe. This is clearly
an example of longitudinal waves.
The waves considered above, transverse or
longitudinal, are travelling or progressive waves
since they travel from one part of the medium
to another. The material medium as a whole
does not move, as already noted. A stream, for
example, constitutes motion of water as a whole.
In a water wave, it is the disturbance that moves,
not water as a whole. Likewise a wind (motion
of air as a whole) should not be confused with a
sound wave which is a propagation of
disturbance (in pressure density) in air, without
the motion of air medium as a whole.
In transverse waves, the particle motion is
normal to the direction of propagation of the
wave. Therefore, as the wave propagates, each
element of the medium undergoes a shearing
strain. Transverse waves can, therefore, be
propagated only in those media, which can
sustain shearing stress, such as solids and not
in fluids. Fluids, as well as, solids can sustain
compressive strain; therefore, longitudinal
waves can be propagated in all elastic media.
For example, in medium like steel, both
transverse and longitudinal waves can
propagate, while air can sustain only
longitudinal waves. The waves on the surface
of water are of two kinds: capillary waves and
gravity waves. The former are ripples of fairly
short wavelength—not more than a few
centimetre—and the restoring force that
produces them is the surface tension of water.
Gravity waves have wavelengths typically
ranging from several metres to several hundred
meters. The restoring force that produces these
waves is the pull of gravity, which tends to keep
the water surface at its lowest level. The
oscillations of the particles in these waves are
not confined to the surface only, but extend with
diminishing amplitude to the very bottom. The
particle motion in water waves involves a
complicated motion—they not only move up and
down but also back and forth. The waves in an
ocean are the combination of both longitudinal
and transverse waves.
It is found that, generally, transverse and
longitudinal waves travel with different speed
in the same medium.
uu
uu
u Example 15.1 Given below are some
examples of wave motion. State in each case
if the wave motion is transverse, longitudinal
or a combination of both:
(a
) Motion of a kink in a longitudinal spring
produced by displacing one end of the
spring sideways.
(b) Waves produced in a cylinder
containing a liquid by moving its piston
back and forth.
(c) Waves produced by a motorboat sailing
in water.
(d) Ultrasonic waves in air produced by a
vibrating quartz crystal.
Answer
(a) Transverse and longitudinal
(b) Longitudinal
(c) Transverse and longitudinal
(d) Longitudinal t
15.3 DISPLACEMENT RELATION IN
A PROGRESSIVE WAVE
For mathematical description of a travelling
wave, we need a function of both position x and
time t. Such a function at every instant should
give the shape of the wave at that instant. Also,
at every given location, it should describe the
motion of the constituent of the medium at that
location. If we wish to describe a sinusoidal
travelling wave (such as the one shown in Fig.
15.3) the corresponding function must also be
sinusoidal. For convenience, we shall take the
wave to be transverse so that if the position of
the constituents of the medium is denoted by x,
the displacement from the equilibrium position
may be denoted by y. A sinusoidal travelling
wave is then described by:
(15.2)
The term
φ
in the argument of sine function
means equivalently that we are considering a
linear combination of sine and cosine functions:
(15.3)
From Equations (15.2) and (15.3),
To understand why Equation (15.2)
represents a sinusoidal travelling wave, take a
fixed instant, say t = t
0
. Then, the argument of
the sine function in Equation (15.2) is simply