).
(9.5)
Since the strain is a ratio of change in
dimension to the original dimension, it has no
units or dimensional formula.
9.4 HOOKE’S LAW
Stress and strain take different forms in the
situations depicted in the Fig. (9.2). For small
deformations the stress and strain are
proportional to each other. This is known as
Hooke’s law.
Thus,
stress ∝ strain
stress = k × strain (9.6)
where k is the proportionality constant and is
known as modulus of elasticity.
Hooke’s law is an empirical law and is found
to be valid for most materials. However, there
are some materials which do not exhibit this
linear relationship.
9.5 STRESS-STRAIN CURVE
The relation between the stress and the strain
for a given material under tensile stress can be
found experimentally. In a standard test of
tensile properties, a test cylinder or a wire is
stretched by an applied force. The fractional
change in length (the strain) and the applied
force needed to cause the strain are recorded.
The applied force is gradually increased in steps
and the change in length is noted. A graph is
plotted between the stress (which is equal in
magnitude to the applied force per unit area)
and the strain produced. A typical graph for a
metal is shown in Fig. 9.3. Analogous graphs
for compression and shear stress may also be
obtained. The stress-strain curves vary from
material to material. These curves help us to
understand how a given material deforms with
increasing loads. From the graph, we can see
that in the region between O to A, the curve is
linear. In this region, Hooke’s law is obeyed.
The body regains its original dimensions when
the applied force is removed. In this region, the
solid behaves as an elastic body.
In the region from A to B, stress and strain
are not proportional. Nevertheless, the body still
returns to its original dimension when the load
is removed. The point B in the curve is known
as yield point (also known as elastic limit) and
the corresponding stress is known as yield
strength (
σ
y
) of the material.
If the load is increased further, the stress
developed exceeds the yield strength and strain
increases rapidly even for a small change in the
stress. The portion of the curve between B and
D shows this. When the load is removed, say at
some point C between B and D, the body does
not regain its original dimension. In this case,
even when the stress is zero, the strain is not
zero. The material is said to have a permanent
set. The deformation is said to be plastic
deformation. The point D on the graph is the
ultimate tensile strength (
σ
u
) of the material.
Beyond this point, additional strain is produced
even by a reduced applied force and fracture
occurs at point E. If the ultimate strength and
fracture points D and E are close, the material
is said to be brittle. If they are far apart, the
material is said to be ductile.
As stated earlier, the stress-strain behaviour
varies from material to material. For example,
rubber can be pulled to several times its original
length and still returns to its original shape.
Fig. 9.4 shows stress-strain curve for the elastic
tissue of aorta, present in the heart. Note that
although elastic region is very large, the material
Fig. 9.3 A typical stress-strain curve for a metal.