UNITS AND MEASUREMENT 31
For example, 12.9 g – 7.06 g, both specified to three
significant figures, cannot properly be evaluated
as 5.84 g but only as 5.8 g, as uncertainties in
subtraction or addition combine in a different
fashion (smallest number of decimal places rather
than the number of significant figures in any of
the number added or subtracted).
(3) The relative error of a value of number
specified to significant figures depends not
only on n but also on the number itself.
For example, the accuracy in measurement of
mass 1.02 g is ± 0.01 g whereas another
measurement 9.89 g is also accurate to ± 0.01 g.
The relative error in 1.02 g is
= (± 0.01/1.02) × 100 %
= ± 1%
Similarly, the relative error in 9.89 g is
= (± 0.01/9.89) × 100 %
= ± 0.1 %
Finally, remember that intermediate results in
a multi-step computation should be
calculated to one more significant figure in
every measurement than the number of
digits in the least precise measurement.
These should be justified by the data and then
the arithmetic operations may be carried out;
otherwise rounding errors can build up. For
example, the reciprocal of 9.58, calculated (after
rounding off) to the same number of significant
figures (three) is 0.104, but the reciprocal of
0.104 calculated to three significant figures is
9.62. However, if we had written 1/9.58 = 0.1044
and then taken the reciprocal to three significant
figures, we would have retrieved the original
value of 9.58.
This example justifies the idea to retain one
more extra digit (than the number of digits in
the least precise measurement) in intermediate
steps of the complex multi-step calculations in
order to avoid additional errors in the process
of rounding off the numbers.
2.8 DIMENSIONS OF PHYSICAL QUANTITIES
The nature of a physical quantity is described
by its dimensions. All the physical quantities
represented by derived units can be expressed
in terms of some combination of seven
fundamental or base quantities. We shall call
these base quantities as the seven dimensions
of the physical world, which are denoted with
square brackets [ ]. Thus, length has the
dimension [L], mass [M], time [T], electric current
[A], thermodynamic temperature [K], luminous
intensity [cd], and amount of substance [mol].
The dimensions of a physical quantity are the
powers (or exponents) to which the base
quantities are raised to represent that
quantity. Note that using the square brackets
[ ] round a quantity means that we are dealing
with ‘the dimensions of’ the quantity.
In mechanics, all the physical quantities can
be written in terms of the dimensions [L], [M]
and [T]. For example, the volume occupied by
an object is expressed as the product of length,
breadth and height, or three lengths. Hence the
dimensions of volume are [L] × [L] × [L] = [L]
3
= [L
3
].
As the volume is independent of mass and time,
it is said to possess zero dimension in mass [M°],
zero dimension in time [T°] and three
dimensions in length.
Similarly, force, as the product of mass and
acceleration, can be expressed as
Force = mass × acceleration
= mass × (length)/(time)
2
The dimensions of force are [M] [L]/[T]
2
=
[M L T
–2
]. Thus, the force has one dimension in
mass, one dimension in length, and –2
dimensions in time. The dimensions in all other
base quantities are zero.
Note that in this type of representation, the
magnitudes are not considered. It is the quality
of the type of the physical quantity that enters.
Thus, a change in velocity, initial velocity,
average velocity, final velocity, and speed are
all equivalent in this context. Since all these
quantities can be expressed as length/time,
their dimensions are [L]/[T] or [L T
–1
].
2.9 DIMENSIONAL FORMULAE AND
DIMENSIONAL EQUATIONS
The expression which shows how and which of
the base quantities represent the dimensions
of a physical quantity is called the dimensional
formula of the given physical quantity. For
example, the dimensional formula of the volume
is [M° L
3
T°], and that of speed or velocity is
[M° L T
-1
]. Similarly, [M° L T
–2
] is the dimensional
formula of acceleration and [M L
–3
T°] that of
mass density.
An equation obtained by equating a physical
quantity with its dimensional formula is called
the dimensional equation of the physical