PROBABILITY 531
The theory of probabilities is simply the Science of logic
quantitatively treated. C.S. PEIRCE
13.1 Introduction
In earlier Classes, we have studied the probability as a
measure of uncertainty of events in a random experiment.
We discussed the axiomatic approach formulated by
Russian Mathematician, A.N. Kolmogorov (1903-1987)
and treated probability as a function of outcomes of the
experiment. We have also established equivalence between
the axiomatic theory and the classical theory of probability
in case of equally likely outcomes. On the basis of this
relationship, we obtained probabilities of events associated
with discrete sample spaces. We have also studied the
addition rule of probability. In this chapter, we shall discuss
the important concept of conditional probability of an event
given that another event has occurred, which will be helpful
in understanding the Bayes' theorem, multiplication rule of
probability and independence of events. We shall also learn
an important concept of random variable and its probability
distribution and also the mean and variance of a probability distribution. In the last
section of the chapter, we shall study an important discrete probability distribution
called Binomial distribution. Throughout this chapter, we shall take up the experiments
having equally likely outcomes, unless stated otherwise.
13.2 Conditional Probability
Uptill now in probability, we have discussed the methods of finding the probability of
events. If we have two events from the same sample space, does the information
about the occurrence of one of the events affect the probability of the other event? Let
us try to answer this question by taking up a random experiment in which the outcomes
are equally likely to occur.
Consider the experiment of tossing three fair coins. The sample space of the
experiment is
S = {HHH, HHT, HTH, THH, HTT, THT, TTH, TTT}
Chapter
13
PROBABILITY
Pierre de Fermat
(1601-1665)
2019-20
532 MATHEMATICS
Since the coins are fair, we can assign the probability
1
8
to each sample point. Let
E be the event ‘at least two heads appear and F be the event ‘first coin shows tail’.
Then
E = {HHH, HHT, HTH, THH}
and F = {THH, THT, TTH, TTT}
Therefore P(E) = P ({HHH}) + P ({HHT}) + P ({HTH}) + P ({THH})
=
11111
88882
+++=
(Why ?)
and P(F) = P ({THH}) + P ({THT}) + P ({TTH}) + P ({TTT})
=
11111
88882
+++=
Also E F = {THH}
with P(E F) = P({THH}) =
1
8
Now, suppose we are given that the first coin shows tail, i.e. F occurs, then what is
the probability of occurrence of E? With the information of occurrence of F, we are
sure that the cases in which first coin does not result into a tail should not be considered
while finding the probability of E. This information reduces our sample space from the
set S to its subset F for the event E. In other words, the additional information really
amounts to telling us that the situation may be considered as being that of a new
random experiment for which the sample space consists of all those outcomes only
which are favourable to the occurrence of the event F.
Now, the sample point of F which is favourable to event E is THH.
Thus, Probability of E considering F as the sample space =
1
4
,
or Probability of E given that the event F has occurred =
1
4
This probability of the event E is called the conditional probability of E given
that F has already occurred, and is denoted by P (E|F).
Thus P(E|F) =
1
4
Note that the elements of F which favour the event E are the common elements of
E and F, i.e. the sample points of E F.
2019-20
PROBABILITY 533
Thus, we can also write the conditional probability of E given that F has occurred as
P(E|F) =
Number of elementary events favourable to E F
Number of elementary events which are favourab
le to F
=
(F)
n
n
Dividing the numerator and the denominator by total number of elementary events
of the sample space, we see that P(E|F) can also be written as
P(E|F) =
(E F)
P(E F)
(S)
(F)
P(F)
(S)
n
n
n
n
=
... (1)
Note that (1) is valid only when P(F) 0 i.e., F ≠ φ (Why?)
Thus, we can define the conditional probability as follows :
Definition 1 If E and F are two events associated with the same sample space of a
random experiment, the conditional probability of the event E given that F has occurred,
i.e. P (E|F) is given by
P(E|F) =
P (E F)
P (F)
provided P(F) 0
13.2.1 Properties of conditional probability
Let E and F be events of a sample space S of an experiment, then we have
Property 1 P (S|F) = P(F|F) = 1
We know that
P (S|F) =
P (S F) P(F)
1
P (F) P (F)
==
Also P(F|F) =
P (F F) P (F)
1
P (F) P (F)
==
Thus P(S|F) = P(F|F) = 1
Property 2 If A and B are any two events of a sample space S and F is an event
of S such that P(F) 0, then
P((A B)|F) = P (A|F) + P(B|F) P((A B)|F)
2019-20
534 MATHEMATICS
In particular, if A and B are disjoint events, then
P((AB)|F) = P(A|F) + P(B|F)
We have
P((A B)|F) =
P[(A B) F]
P(F)
∪∩
=
P[(A F) (B F)]
P(F)
∩∪
(by distributive law of union of sets over intersection)
=
P (A F) + P (B F) P (A B F)
P (F)
∩∩
=
P (A F) P (B F) P[(A B) F]
P(F) P(F) P(F)
∩∩
+−
= P (A|F) + P(B|F) P ((A B)|F)
When A and B are disjoint events, then
P ((A B)|F) = 0
P ((A B)|F) = P(A|F) + P(B|F)
Property 3 P(E|F) = 1 P (E|F)
From Property 1, we know that P(S|F) = 1
P (E E|F) = 1 since S = E E
P(E|F) + P (E|F) = 1 since E and E are disjoint events
Thus, P (E|F) = 1 P(E|F)
Let us now take up some examples.
Example 1 If P (A) =
7
13
, P(B) =
9
13
and P (A B) =
4
13
, evaluate P (A|B).
Solution We have
4
P (A B) 4
13
P (A|B) =
9
P ( B) 9
13
==
Example 2 A family has two children. What is the probability that both the children are
boys given that at least one of them is a boy ?
2019-20
PROBABILITY 535
Solution Let b stand for boy and g for girl. The sample space of the experiment is
S = {(b, b), (g, b), (b, g), (g, g)}
Let E and F denote the following events :
E : ‘both the children are boys’
F : ‘at least one of the child is a boy
Then E = {(b,b)} and F = {(b,b), (g,b), (b,g)}
Now EF = {(b,b)}
Thus P (F) =
3
4
and P (EF )=
1
4
Therefore P (E|F) =
1
P (E F) 1
4
3
P ( F) 3
4
==
Example 3 Ten cards numbered 1 to 10 are placed in a box, mixed up thoroughly and
then one card is drawn randomly. If it is known that the number on the drawn card is
more than 3, what is the probability that it is an even number?
Solution Let A be the event ‘the number on the card drawn is even’ and B be the
event ‘the number on the card drawn is greater than 3’. We have to find P(A|B).
Now, the sample space of the experiment is S = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
Then A = {2, 4, 6, 8, 10}, B = {4, 5, 6, 7, 8, 9, 10}
and A B = {4, 6, 8, 10}
Also P(A) =
57 4
, P(B) = and P(A B)
10 10 10
∩=
Then P(A|B) =
4
P (A B) 4
10
7
P ( B) 7
10
==
Example 4 In a school, there are 1000 students, out of which 430 are girls. It is known
that out of 430, 10% of the girls study in class XII. What is the probability that a student
chosen randomly studies in Class XII given that the chosen student is a girl?
Solution Let E denote the event that a student chosen randomly studies in Class XII
and F be the event that the randomly chosen student is a girl. We have to find P (E|F).
2019-20
536 MATHEMATICS
Now P(F) =
430
0.43
1000
=
and
43
P( E F) = 0.043
1000
∩=
(Why?)
Then P(E|F) =
P (E F) 0.043
0.1
P ( F) 0.43
==
Example 5 A die is thrown three times. Events A and B are defined as below:
A : 4 on the third throw
B : 6 on the first and 5 on the second throw
Find the probability of A given that B has already occurred.
Solution The sample space has 216 outcomes.
Now A =
(1,1,4) (1,2,4) ... (1,6,4) (2,1,4) (2,2,4
) ... (2,6,4)
(3,1,4) (3,2,4) ... (3,6,4) (4,1,4) (4,2,4) ..
.(4,6,4)
(5,1,4) (5,2,4) ... (5,6,4) (6,1,4) (6,2,4) .
..(6,6,4)
B = {(6,5,1), (6,5,2), (6,5,3), (6,5,4), (6,5,5), (6,5,6)}
and AB = {(6,5,4)}.
Now P(B) =
6
216
and P (A B) =
1
216
Then P(A|B) =
1
P (A B) 1
216
6
P (B) 6
216
==
Example 6 A die is thrown twice and the sum of the numbers appearing is observed
to be 6. What is the conditional probability that the number 4 has appeared at least
once?
Solution Let E be the event that ‘number 4 appears at least once’ and F be the event
that ‘the sum of the numbers appearing is 6’.
Then, E = {(4,1), (4,2), (4,3), (4,4), (4,5), (4,6), (1,4), (2,4), (3,4), (5,4), (6,4)}
and F = {(1,5), (2,4), (3,3), (4,2), (5,1)}
We have P(E) =
11
36
and P (F) =
5
36
Also EF = {(2,4), (4,2)}
2019-20
PROBABILITY 537
Therefore P(E F) =
2
36
Hence, the required probability
P (E|F) =
2
P (E F) 2
36
5
P (F) 5
36
==
For the conditional probability discussed above, we have considered the elemen-
tary events of the experiment to be equally likely and the corresponding definition of
the probability of an event was used. However, the same definition can also be used in
the general case where the elementary events of the sample space are not equally
likely, the probabilities P(EF) and P (F) being calculated accordingly. Let us take up
the following example.
Example 7 Consider the experiment of tossing a coin. If the coin shows head, toss it
again but if it shows tail, then throw a die. Find the
conditional probability of the event that ‘the die shows
a number greater than 4’ given that ‘there is at least
one tail’.
Solution The outcomes of the experiment can be
represented in following diagrammatic manner called
the ‘tree diagram’.
The sample space of the experiment may be
described as
S = {(H,H), (H,T), (T,1), (T,2), (T,3), (T,4), (T,5), (T,6)}
where (H, H) denotes that both the tosses result into
head and (T, i) denote the first toss result into a tail and
the number i appeared on the die for i = 1,2,3,4,5,6.
Thus, the probabilities assigned to the 8 elementary
events
(H, H), (H, T), (T, 1), (T, 2), (T, 3) (T, 4), (T, 5), (T, 6)
are
11111111
,,,,,,,
4 4 12 12 12 12 12 12
respectively which is
clear from the Fig 13.2.
Fig 13.1
Fig 13.2
2019-20
538 MATHEMATICS
Let F be the event that there is at least one tail and E be the event the die shows
a number greater than 4
’. Then
F = {(H,T), (T,1), (T,2), (T,3), (T,4), (T,5), (T,6)}
E = {(T,5), (T,6)} and E F = {(T,5), (T,6)}
Now P (F) = P({(H,T)}) + P ({(T,1)}) + P ({(T,2)}) + P ({(T,3)})
+ P ({(T,4)}) + P({(T,5)}) + P({(T,6)})
=
11111113
4 12 12 12 12 12 12 4
++++++=
and P (E F) = P ({(T,5)}) + P ({(T,6)}) =
1 11
12 12 6
+=
Hence P(E|F) =
1
P (E F) 2
6
3
P (F) 9
4
==
EXERCISE 13.1
1. Given that E and F are events such that P(E) = 0.6, P(F) = 0.3 and
P(E F) = 0.2, find P (E|F) and P (F|E)
2. Compute P(A|B), if P(B) = 0.5 and P (A B) = 0.32
3. If P (A) = 0.8, P (B) = 0.5 and P (B|A) = 0.4, find
(i) P (A B) (ii) P(A|B) (iii) P(A B)
4. Evaluate P(A B), if 2P(A) = P(B) =
5
13
and P(A|B) =
2
5
5. If P(A) =
6
11
, P(B) =
5
11
and P(A B)
7
11
=
, find
(i) P(AB) (ii) P(A|B) (iii) P(B|A)
Determine P(E|F) in Exercises 6 to 9.
6. A coin is tossed three times, where
(i) E : head on third toss , F : heads on first two tosses
(ii) E : at least two heads , F : at most two heads
(iii) E : at most two tails , F : at least one tail
2019-20
PROBABILITY 539
7. Two coins are tossed once, where
(i) E : tail appears on one coin, F : one coin shows head
(ii) E : no tail appears, F : no head appears
8. A die is thrown three times,
E : 4 appears on the third toss, F : 6 and 5 appears respectively
on first two tosses
9. Mother, father and son line up at random for a family picture
E : son on one end, F : father in middle
10. A black and a red dice are rolled.
(a) Find the conditional probability of obtaining a sum greater than 9, given
that the black die resulted in a 5.
(b) Find the conditional probability of obtaining the sum 8, given that the red die
resulted in a number less than 4.
11. A fair die is rolled. Consider events E = {1,3,5}, F = {2,3} and G = {2,3,4,5}
Find
(i) P (E|F) and P (F|E) (ii) P (E|G) and P (G|E)
(iii) P ((E F)|G) and P((E F)|G)
12. Assume that each born child is equally likely to be a boy or a girl. If a family has
two children, what is the conditional probability that both are girls given that
(i) the youngest is a girl, (ii) at least one is a girl?
13. An instructor has a question bank consisting of 300 easy True / False questions,
200 difficult True / False questions, 500 easy multiple choice questions and 400
difficult multiple choice questions. If a question is selected at random from the
question bank, what is the probability that it will be an easy question given that it
is a multiple choice question?
14. Given that the two numbers appearing on throwing two dice are different. Find
the probability of the event
the sum of numbers on the dice is 4.
15. Consider the experiment of throwing a die, if a multiple of 3 comes up, throw the
die again and if any other number comes, toss a coin. Find the conditional probability
of the event ‘the coin shows a tail’, given that ‘at least one die shows a 3’.
In each of the Exercises 16 and 17 choose the correct answer:
16. If P (A) =
1
2
, P (B) = 0, then P (A|B) is
(A) 0 (B)
1
2
(C) not defined (D) 1
2019-20
540 MATHEMATICS
17. If A and B are events such that P(A|B) = P(B|A), then
(A) A B but A B (B) A = B
(C) A B = φ (D) P(A) = P(B)
13.3 Multiplication Theorem on Probability
Let E and F be two events associated with a sample space S. Clearly, the set E F
denotes the event that both E and F have occurred. In other words, E F denotes the
simultaneous occurrence of the events E and F. The event E F is also written as EF.
Very often we need to find the probability of the event EF. For example, in the
experiment of drawing two cards one after the other, we may be interested in finding
the probability of the event a king and a queen. The probability of event EF is obtained
by using the conditional probability as obtained below :
We know that the conditional probability of event E given that F has occurred is
denoted by P(E|F) and is given by
P(E|F) =
P (E F)
,P (F) 0
P (F)
From this result, we can write
P (E F) = P(F) . P (E|F) ... (1)
Also, we know that
P (F|E) =
P (F E)
, P (E) 0
P (E)
or P (F|E) =
P (E F)
P (E)
(since E F = F E)
Thus, P(E F) = P(E). P(F|E) .... (2)
Combining (1) and (2), we find that
P (E F) = P(E) P(F|E)
= P(F) P(E|F) provided P(E) 0 and P(F) 0.
The above result is known as the multiplication rule of probability.
Let us now take up an example.
Example 8 An urn contains 10 black and 5 white balls. Two balls are drawn from the
urn one after the other without replacement. What is the probability that both drawn
balls are black?
Solution Let E and F denote respectively the events that first and second ball drawn
are black. We have to find P (E F) or P (EF).
2019-20
PROBABILITY 541
Now P(E) = P (black ball in first draw) =
10
15
Also given that the first ball drawn is black, i.e., event E has occurred, now there
are 9 black balls and five white balls left in the urn. Therefore, the probability that the
second ball drawn is black, given that the ball in the first draw is black, is nothing but
the conditional probability of F given that E has occurred.
i.e. P(F|E) =
9
14
By multiplication rule of probability, we have
P (E F) = P (E) P (F|E)
=
10 9 3
15 14 7
×=
Multiplication rule of probability for more than two events If E, F and G are
three events of sample space, we have
P (E F G) = P (E) P (F|E) P (G|(E F)) = P (E) P (F|E) P (G|EF)
Similarly, the multiplication rule of probability can be extended for four or
more events.
The following example illustrates the extension of multiplication rule of probability
for three events.
Example 9 Three cards are drawn successively, without replacement from a pack of
52 well shuffled cards. What is the probability that first two cards are kings and the
third card drawn is an ace?
Solution Let K denote the event that the card drawn is king and A be the event that
the card drawn is an ace. Clearly, we have to find P (KKA)
Now P(K) =
4
52
Also, P (K|K) is the probability of second king with the condition that one king has
already been drawn. Now there are three kings in (52
1) = 51 cards.
Therefore P(K|K) =
3
51
Lastly, P(A|KK) is the probability of third drawn card to be an ace, with the condition
that two kings have already been drawn. Now there are four aces in left 50 cards.
2019-20
542 MATHEMATICS
Therefore P (A|KK) =
4
50
By multiplication law of probability, we have
P (KKA) = P(K) P(K|K) P (A|KK)
=
434 2
52 51 50 5525
××=
13.4 Independent Events
Consider the experiment of drawing a card from a deck of 52 playing cards, in which
the elementary events are assumed to be equally likely. If E and F denote the events
'the card drawn is a spade' and 'the card drawn is an ace' respectively, then
P(E) =
13 1 41
and P(F)
52 4 52 13
= ==
Also E and F is the event ' the card drawn is the ace of spades' so that
P(E F) =
1
52
Hence P(E|F) =
1
P (E F) 1
52
1
P (F) 4
13
==
Since P(E) =
1
4
= P (E|F), we can say that the occurrence of event F has not
affected the probability of occurrence of the event E.
We also have
P(F|E) =
1
P (E F) 1
52
P(F)
1
P(E) 13
4
= ==
Again, P (F) =
1
13
= P (F|E) shows that occurrence of event E has not affected
the probability of occurrence of the event F.
Thus, E and F are two events such that the probability of occurrence of one of
them is not affected by occurrence of the other.
Such events are called independent events.
2019-20
PROBABILITY 543
Definition 2 Two events E and F are said to be independent, if
P (F|E) = P (F) provided P (E) 0
and P (E|F) = P (E) provided P (F) 0
Thus, in this definition we need to have P (E) 0 and P(F) 0
Now, by the multiplication rule of probability, we have
P (E F) = P(E) . P (F|E) ... (1)
If E and F are independent, then (1) becomes
P (E F) = P(E) . P (F) ... (2)
Thus, using (2), the independence of two events is also defined as follows:
Definition 3 Let E and F be two events associated with the same random experiment,
then E and F are said to be independent if
P (E F) = P(E) . P (F)
Remarks
(i) Two events E and F are said to be dependent if they are not independent, i.e. if
P(E F ) P (E) . P (F)
(ii) Sometimes there is a confusion between independent events and mutually
exclusive events. Term
independent is defined in terms of probability of events
whereas mutually exclusive is defined in term of events (subset of sample space).
Moreover, mutually exclusive events never have an outcome common, but
independent events, may have common outcome. Clearly,
independent and
mutually exclusive do not have the same meaning.
In other words, two independent events having nonzero probabilities of occurrence
can not be mutually exclusive, and conversely, i.e. two mutually exclusive events
having nonzero probabilities of occurrence can not be independent.
(iii) Two experiments are said to be independent if for every pair of events E and F,
where E is associated with the first experiment and F with the second experiment,
the probability of the simultaneous occurrence of the events E and F when the
two experiments are performed is the product of P(E) and P(F) calculated
separately on the basis of two experiments, i.e., P (E F) = P (E) . P(F)
(iv) Three events A, B and C are said to be mutually independent, if
P (A B) = P (A) P (B)
P (A C) = P (A) P (C)
P (B C) = P (B) P(C)
and P (A B C) = P (A) P (B) P (C)
2019-20
544 MATHEMATICS
If at least one of the above is not true for three given events, we say that the
events are not independent.
Example 10 A die is thrown. If E is the event ‘the number appearing is a multiple of
3’ and F be the event ‘the number appearing is even’ then find whether E and F are
independent ?
Solution We know that the sample space is S = {1, 2, 3, 4, 5, 6}
Now E = { 3, 6}, F = { 2, 4, 6} and E F = {6}
Then P (E) =
21 31
1
, P(F) and P (E F)
63 62 6
= == ∩=
Clearly P (E F) = P(E). P (F)
Hence E and F are independent events.
Example 11 An unbiased die is thrown twice. Let the event A be odd number on the
first throw and B the event odd number on the second throw’. Check the independence
of the events A and B.
Solution If all the 36 elementary events of the experiment are considered to be equally
likely, we have
P(A) =
18 1
36 2
=
and
18 1
P(B)
36 2
==
Also P (A B) = P (odd number on both throws)
=
91
36 4
=
Now P (A) P(B) =
111
224
×=
Clearly P (A B) = P(A) × P (B)
Thus, A and B are independent events
Example 12 Three coins are tossed simultaneously. Consider the event E ‘three heads
or three tails, F at least two heads and G at most two heads. Of the pairs (E,F),
(E,G) and (F,G), which are independent? which are dependent?
Solution The sample space of the experiment is given by
S = {HHH, HHT, HTH, THH, HTT, THT, TTH, TTT}
Clearly E = {HHH, TTT}, F= {HHH, HHT, HTH, THH}
2019-20
PROBABILITY 545
and G = {HHT, HTH, THH, HTT, THT, TTH, TTT}
Also E F = {HHH}, E G = {TTT}, F G = { HHT, HTH, THH}
Therefore P (E) =
21 4 1 7
, P(F) , P(G)
84 8 2 8
= == =
and P (EF) =
1 1 3
, P(E G) , P(F G)
8 8 8
∩= ∩=
Also P(E) . P (F) =
111 17 7
, P(E) P(G)
428 4 8 32
×= =×=
and P(F) . P(G) =
17 7
2 8 16
×=
Thus P (E F) = P(E) . P(F)
P (E G) P(E) . P(G)
and P (F G) P (F) . P(G)
Hence, the events (E and F) are independent, and the events (E and G) and
(F and G) are dependent.
Example 13 Prove that if E and F are independent events, then so are the events
E and F′.
Solution Since E and F are independent, we have
P (E F) = P (E) . P(F) ....(1)
From the venn diagram in Fig 13.3, it is clear
that E F and E F are mutually exclusive events
and also E =(E F)(E F).
Therefore P (E) = P (E F) + P(E F)
or P(E F) = P(E) P(E F)
= P(E) P(E) . P(F)
(by (1))
= P(E) (1
P(F))
= P(E). P(F)
Hence, E and F are independent
(E F )
(E F)
E
F
S
(E F)
(E F )’’
Fig 13.3
2019-20
546 MATHEMATICS
Note In a similar manner, it can be shown that if the events E and F are
independent, then
(a) E and F are independent,
(b) E and F are independent
Example 14 If A and B are two independent events, then the probability of occurrence
of at least one of A and B is given by 1– P(A) P(B)
Solution We have
P (at least one of A and B) = P(A B)
= P(A) + P(B) P(A B)
= P(A) + P(B) P(A) P(B)
= P(A) + P(B) [1P(A)]
= P(A) + P(B). P(A)
= 1 P(A) + P(B) P(A)
= 1 P(A) [1 P(B)]
= 1
P(A) P (B)
EXERCISE 13.2
1. If P(A)
3
5
=
and P (B)
1
5
=
, find P (A B) if A and B are independent events.
2. Two cards are drawn at random and without replacement from a pack of 52
playing cards. Find the probability that both the cards are black.
3. A box of oranges is inspected by examining three randomly selected oranges
drawn without replacement. If all the three oranges are good, the box is approved
for sale, otherwise, it is rejected. Find the probability that a box containing 15
oranges out of which 12 are good and 3 are bad ones will be approved for sale.
4. A fair coin and an unbiased die are tossed. Let A be the event
head appears on
the coin
and B be the event 3 on the die. Check whether A and B are
independent events or not.
5. A die marked 1, 2, 3 in red and 4, 5, 6 in green is tossed. Let A be the event,
‘the number is even,
and B be the event, the number is red. Are A and B
independent?
6. Let E and F be events with P(E)
3
5
=
, P (F)
3
10
=
and P (E F) =
1
5
. Are
E and F independent?
2019-20
PROBABILITY 547
7. Given that the events A and B are such that P(A) =
1
2
, P(A B) =
3
5
and
P (B) = p. Find p if they are (i) mutually exclusive (ii) independent.
8. Let A and B be independent events with P(A) = 0.3 and P(B) = 0.4. Find
(i) P (A B) (ii) P (A B)
(iii) P (A|B) (iv) P (B|A)
9. If A and B are two events such that P (A) =
1
4
, P (B) =
1
2
and P(A B) =
1
8
,
find P (not A and not B).
10. Events A and B are such that P (A) =
1
2
, P(B) =
7
12
and P(not A or not B) =
1
4
.
State whether A and B are independent ?
11. Given two independent events A and B such that P(A) = 0.3, P(B) = 0.6.
Find
(i) P(A and B) (ii) P(A and not B)
(iii) P(A or B) (iv) P(neither A nor B)
12. A die is tossed thrice. Find the probability of getting an odd number at least once.
13. Two balls are drawn at random with replacement from a box containing 10 black
and 8 red balls. Find the probability that
(i) both balls are red.
(ii) first ball is black and second is red.
(iii) one of them is black and other is red.
14. Probability of solving specific problem independently by A and B are
1
2
and
1
3
respectively. If both try to solve the problem independently, find the probability
that
(i) the problem is solved (ii) exactly one of them solves the problem.
15. One card is drawn at random from a well shuffled deck of 52 cards. In which of
the following cases are the events E and F independent ?
(i) E : ‘the card drawn is a spade’
F : ‘the card drawn is an ace
(ii) E : ‘the card drawn is black
F : the card drawn is a king
(iii) E : ‘the card drawn is a king or queen’
F : ‘the card drawn is a queen or jack’.
2019-20
548 MATHEMATICS
16. In a hostel, 60% of the students read Hindi newspaper, 40% read English
newspaper and 20% read both Hindi and English newspapers. A student is
selected at random.
(a) Find the probability that she reads neither Hindi nor English newspapers.
(b) If she reads Hindi newspaper, find the probability that she reads English
newspaper.
(c) If she reads English newspaper, find the probability that she reads Hindi
newspaper.
Choose the correct answer in Exercises 17 and 18.
17. The probability of obtaining an even prime number on each die, when a pair of
dice is rolled is
(A) 0 (B)
1
3
(C)
1
12
(D)
1
36
18. Two events A and B will be independent, if
(A) A and B are mutually exclusive
(B) P(AB) = [1 P(A)] [1 P(B)]
(C) P(A) = P(B)
(D) P(A) + P(B) = 1
13.5 Bayes' Theorem
Consider that there are two bags I and II. Bag I contains 2 white and 3 red balls and
Bag II contains 4 white and 5 red balls. One ball is drawn at random from one of the
bags. We can find the probability of selecting any of the bags (i.e.
1
2
) or probability of
drawing a ball of a particular colour (say white) from a particular bag (say Bag I). In
other words, we can find the probability that the ball drawn is of a particular colour, if
we are given the bag from which the ball is drawn. But, can we find the probability that
the ball drawn is from a particular bag (say Bag II), if the colour of the ball drawn is
given? Here, we have to find the reverse probability of Bag II to be selected when an
event occurred after it is known. Famous mathematician, John Bayes' solved the problem
of finding reverse probability by using conditional probability. The formula developed
by him is known as Bayes theoremwhich was published posthumously in 1763.
Before stating and proving the Bayes' theorem, let us first take up a definition and
some preliminary results.
13.5.1 Partition of a sample space
A set of events E
1
, E
2
, ..., E
n
is said to represent a partition of the sample space S if
(a) E
i
E
j
= φ, i j, i, j = 1, 2, 3, ..., n
2019-20
PROBABILITY 549
Fig 13.4
(b) E
1
Ε
2
... E
n
= S and
(c) P(E
i
)
>
0 for all i = 1, 2, ..., n.
In other words, the events E
1
, E
2
, ..., E
n
represent a partition of the sample space
S if they are pairwise disjoint, exhaustive and have nonzero probabilities.
As an example, we see that any nonempty event E and its complement E form a
partition of the sample space S since they satisfy E E = φ and E E = S.
From the Venn diagram in Fig 13.3, one can easily observe that if E and F are any
two events associated with a sample space S, then the set {E F, E F, E F, E F}
is a partition of the sample space S. It may be mentioned that the partition of a sample
space is not unique. There can be several partitions of the same sample space.
We shall now prove a theorem known as Theorem of total probability.
13.5.2 Theorem of total probability
Let {E
1
, E
2
,...,E
n
} be a partition of the sample space S, and suppose that each of the
events E
1
, E
2
,..., E
n
has nonzero probability of occurrence. Let A be any event associated
with S, then
P(A) = P(E
1
) P(A|E
1
) + P(E
2
) P(A|E
2
) + ... + P(E
n
) P(A|E
n
)
=
1
P(E ) P (A|E )
n
j j
j=
Proof Given that E
1
, E
2
,..., E
n
is a partition of the sample space S (Fig 13.4). Therefore,
S = E
1
E
2
... E
n
... (1)
and E
i
E
j
= φ, i j, i, j = 1, 2, ..., n
Now, we know that for any event A,
A = A S
= A (E
1
E
2
... E
n
)
= (A E
1
) (A E
2
) ...∪ (A E
n
)
Also A E
i
and A E
j
are respectively the subsets of E
i
and E
j
. We know that
E
i
and E
j
are disjoint, for
i
j
, therefore, A E
i
and A E
j
are also disjoint for all
i j, i, j = 1, 2, ..., n.
Thus, P(A) = P [(A E
1
) (A E
2
) .....(A E
n
)]
= P (A E
1
) + P (A E
2
) + ... + P (A E
n
)
Now, by multiplication rule of probability, we have
P(A E
i
) = P(E
i
) P(A|E
i
) as P (E
i
) 0i = 1,2,..., n
2019-20
550 MATHEMATICS
Therefore, P (A) = P (E
1
) P (A|E
1
) + P (E
2
) P (A|E
2
) + ... + P (E
n
)P(A|E
n
)
or P(A) =
1
P(E ) P (A|E )
n
j j
j=
Example 15 A person has undertaken a construction job. The probabilities are 0.65
that there will be strike, 0.80 that the construction job will be completed on time if there
is no strike, and 0.32 that the construction job will be completed on time if there is a
strike. Determine the probability that the construction job will be completed on time.
Solution Let A be the event that the construction job will be completed on time, and B
be the event that there will be a strike. We have to find P(A).
We have
P(B) = 0.65, P(no strike) = P(B) = 1
P(B) = 1 0.65 = 0.35
P(A|B) = 0.32, P(A|B) = 0.80
Since events B and B form a partition of the sample space S, therefore, by theorem
on total probability, we have
P(A) = P(B) P(A|B) + P(B) P(A|B)
= 0.65 × 0.32 + 0.35 × 0.8
= 0.208 + 0.28 = 0.488
Thus, the probability that the construction job will be completed in time is 0.488.
We shall now state and prove the Bayes' theorem.
Bayes’ Theorem If E
1
, E
2
,..., E
n
are n non empty events which constitute a partition
of sample space S, i.e. E
1
, E
2
,..., E
n
are pairwise disjoint and E
1
E
2
... E
n
= S and
A is any event of nonzero probability, then
P(E
i
|A) =
1
P (E ) P (A|E )
P(E ) P (A|E )
i i
n
j j
j=
for any i = 1, 2, 3, ..., n
Proof By formula of conditional probability, we know that
P(E
i
|A) =
P(A E )
i
=
P (E ) P (A|E )
P (A)
ii
(by multiplication rule of probability)
=
1
P(E ) P(A|E )
P(E ) P(A|E )
ii
n
jj
j=
(by the result of theorem of total probability)
2019-20
PROBABILITY 551
Remark The following terminology is generally used when Bayes' theorem is applied.
The events E
1
, E
2
, ..., E
n
are called hypotheses.
The probability P(E
i
) is called the priori probability of the hypothesis E
i
The conditional probability P(E
i
|A) is called a posteriori probability of the
hypothesis E
i
.
Bayes' theorem is also called the formula for the probability of "causes". Since the
E
i
's are a partition of the sample space S, one and only one of the events E
i
occurs (i.e.
one of the events E
i
must occur and only one can occur). Hence, the above formula
gives us the probability of a particular E
i
(i.e. a "Cause"), given that the event A has
occurred.
The Bayes' theorem has its applications in variety of situations, few of which are
illustrated in following examples.
Example 16 Bag I contains 3 red and 4 black balls while another Bag II contains 5 red
and 6 black balls. One ball is drawn at random from one of the bags and it is found to
be red. Find the probability that it was drawn from Bag II.
Solution Let E
1
be the event of choosing the bag I, E
2
the event of choosing the bag II
and A be the event of drawing a red ball.
Then P(E
1
) = P(E
2
) =
1
2
Also P(A|E
1
) = P(drawing a red ball from Bag I) =
3
7
and P(A|E
2
) = P(drawing a red ball from Bag II) =
5
11
Now, the probability of drawing a ball from Bag II, being given that it is red,
is P(E
2
|A)
By using Bayes' theorem, we have
P(E
2
|A) =
22
1 12 2
P(E )P(A|E )
P(E ) P(A|E ) + P(E ) P(A|E )
=
15
35
2 11
131 5
68
2 7 2 11
×
=
×+×
Example 17 Given three identical boxes I, II and III, each containing two coins. In
box I, both coins are gold coins, in box II, both are silver coins and in the box III, there
is one gold and one silver coin. A person chooses a box at random and takes out a coin.
If the coin is of gold, what is the probability that the other coin in the box is also of gold?
2019-20
552 MATHEMATICS
Solution Let E
1
, E
2
and E
3
be the events that boxes I, II and III are chosen, respectively.
Then P(E
1
) = P(E
2
) = P(E
3
) =
1
3
Also, let A be the event that the coin drawn is of gold
Then P(A|E
1
) = P(a gold coin from bag I) =
2
2
= 1
P(A|E
2
) = P(a gold coin from bag II) = 0
P(A|E
3
) = P(a gold coin from bag III) =
1
2
Now, the probability that the other coin in the box is of gold
= the probability that gold coin is drawn from the box I.
= P(E
1
|A)
By Bayes' theorem, we know that
P(E
1
|A) =
11
1 12 23 3
P(E ) P(A|E )
P(E ) P(A|E )+ P(E ) P(A|E ) + P(E )P (A|E )
=
1
1
2
3
1 1 11
3
10
3 3 32
×
=
×+ × + ×
Example 18 Suppose that the reliability of a HIV test is specified as follows:
Of people having HIV, 90% of the test detect the disease but 10% go undetected. Of
people free of HIV, 99% of the test are judged HIV–ive but 1% are diagnosed as
showing HIV+ive. From a large population of which only 0.1% have HIV, one person
is selected at random, given the HIV test, and the pathologist reports him/her as
HIV+ive. What is the probability that the person actually has HIV?
Solution Let E denote the event that the person selected is actually having HIV and A
the event that the person's HIV test is diagnosed as +ive. We need to find P(E|A).
Also E denotes the event that the person selected is actually not having HIV.
Clearly, {E, E} is a partition of the sample space of all people in the population.
We are given that
P(E) = 0.1%
0.1
0.001
100
==
2019-20
PROBABILITY 553
P(E) = 1 P(E) = 0.999
P(A|E) = P(Person tested as HIV+ive given that he/she
is actually having HIV)
= 90%
90
0.9
100
==
and P(A|E) = P(Person tested as HIV +ive given that he/she
is actually not having HIV)
= 1% =
1
100
= 0.01
Now, by Bayes' theorem
P(E|A) =
P(E) P(A| E)
P(E) P(A|E) + P(E ) P (A|E )
′′
=
0.001 0.9 90
0.001 0.9 0.999 0.01 1089
×
=
×+ ×
= 0.083 approx.
Thus, the probability that a person selected at random is actually having HIV
given that he/she is tested HIV+ive is 0.083.
Example 19 In a factory which manufactures bolts, machines A, B and C manufacture
respectively 25%, 35% and 40% of the bolts. Of their outputs, 5, 4 and 2 percent are
respectively defective bolts. A bolt is drawn at random from the product and is found
to be defective. What is the probability that it is manufactured by the machine B?
Solution Let events B
1
, B
2
, B
3
be the following :
B
1
: the bolt is manufactured by machine A
B
2
: the bolt is manufactured by machine B
B
3
: the bolt is manufactured by machine C
Clearly, B
1
, B
2
, B
3
are mutually exclusive and exhaustive events and hence, they
represent a partition of the sample space.
Let the event E be
the bolt is defective.
The event E occurs with B
1
or with B
2
or with B
3
. Given that,
P(B
1
) = 25% = 0.25, P (B
2
) = 0.35 and P(B
3
) = 0.40
Again P(E|B
1
) = Probability that the bolt drawn is defective given that it is manu-
factured by machine A = 5% = 0.05
Similarly, P(E|B
2
) = 0.04, P(E|B
3
) = 0.02.
2019-20
554 MATHEMATICS
Hence, by Bayes' Theorem, we have
P(B
2
|E) =
22
1 1 2 23 3
P(B ) P (E|B )
P(B ) P (E|B ) + P (B ) P(E|B ) +P(B ) P(E|B )
=
0.35 0.04
0.25 0.05 0.35 0.04 0.40 0.02
×
×+×+×
=
0.0140 28
0.0345 69
=
Example 20 A doctor is to visit a patient. From the past experience, it is known that
the probabilities that he will come by train, bus, scooter or by other means of transport
are respectively
311 2
, , and
10 5 10 5
. The probabilities that he will be late are
11 1
, , and
4 3 12
,
if he comes by train, bus and scooter respectively, but if he comes by other means of
transport, then he will not be late. When he arrives, he is late. What is the probability
that he comes by train?
Solution Let E be the event that the doctor visits the patient late and let T
1
, T
2
, T
3
, T
4
be the events that the doctor comes by train, bus, scooter, and other means of transport
respectively.
Then P(T
1
) =
2 3 4
3 11 2
, P (T ) ,P (T ) and P (T )
10 5 10 5
== =
(given)
P(E|T
1
) = Probability that the doctor arriving late comes by train =
1
4
Similarly, P(E|T
2
) =
1
3
, P(E|T
3
) =
1
12
and P(E|T
4
) = 0, since he is not late if he
comes by other means of transport.
Therefore, by Bayes' Theorem, we have
P(T
1
|E) = Probability that the doctor arriving late comes by train
=
11
11223344
P(T ) P (E|T )
P(T ) P (E|T ) + P(T ) P(E|T )+P (T ) P(E|T )+ P (T )P (E
|T )
=
31
10 4
3 111 1 1 2
0
10 4 5 3 10 12 5
×
×+×+×+×
=
3 120 1
40 18 2
×=
Hence, the required probability is
1
2
.
2019-20
PROBABILITY 555
Example 21 A man is known to speak truth 3 out of 4 times. He throws a die and
reports that it is a six. Find the probability that it is actually a six.
Solution Let E be the event that the man reports that six occurs in the throwing of the
die and let S
1
be the event that six occurs and S
2
be the event that six does not occur.
Then P(S
1
) = Probability that six occurs =
1
6
P(S
2
) = Probability that six does not occur =
5
6
P(E|S
1
) = Probability that the man reports that six occurs when six has
actually occurred on the die
= Probability that the man speaks the truth =
3
4
P(E|S
2
) = Probability that the man reports that six occurs when six has
not actually occurred on the die
= Probability that the man does not speak the truth
31
1
44
=− =
Thus, by Bayes' theorem, we get
P(S
1
|E) = Probability that the report of the man that six has occurred is
actually a six
=
11
112 2
P(S )P(E |S )
P(S ) P(E|S ) + P(S ) P(E|S )
=
13
1 24 3
64
1351
888
6464
×
=
×+×
Hence, the required probability is
3
.
8
EXERCISE 13.3
1. An urn contains 5 red and 5 black balls. A ball is drawn at random, its colour is
noted and is returned to the urn. Moreover, 2 additional balls of the colour drawn
are put in the urn and then a ball is drawn at random. What is the probability that
the second ball is red?
2019-20
556 MATHEMATICS
2. A bag contains 4 red and 4 black balls, another bag contains 2 red and 6 black
balls. One of the two bags is selected at random and a ball is drawn from the bag
which is found to be red. Find the probability that the ball is drawn from the
first bag.
3. Of the students in a college, it is known that 60% reside in hostel and 40% are
day scholars (not residing in hostel). Previous year results report that 30% of all
students who reside in hostel attain A grade and 20% of day scholars attain A
grade in their annual examination. At the end of the year, one student is chosen
at random from the college and he has an A grade, what is the probability that the
student is a hostlier?
4. In answering a question on a multiple choice test, a student either knows the
answer or guesses. Let
3
4
be the probability that he knows the answer and
1
4
be the probability that he guesses. Assuming that a student who guesses at the
answer will be correct with probability
1
4
. What is the probability that the stu-
dent knows the answer given that he answered it correctly?
5. A laboratory blood test is 99% effective in detecting a certain disease when it is
in fact, present. However, the test also yields a false positive result for 0.5% of
the healthy person tested (i.e. if a healthy person is tested, then, with probability
0.005, the test will imply he has the disease). If 0.1 percent of the population
actually has the disease, what is the probability that a person has the disease
given that his test result is positive ?
6. There are three coins. One is a two headed coin (having head on both faces),
another is a biased coin that comes up heads 75% of the time and third is an
unbiased coin. One of the three coins is chosen at random and tossed, it shows
heads, what is the probability that it was the two headed coin ?
7. An insurance company insured 2000 scooter drivers, 4000 car drivers and 6000
truck drivers. The probability of an accidents are 0.01, 0.03 and 0.15 respectively.
One of the insured persons meets with an accident. What is the probability that
he is a scooter driver?
8. A factory has two machines A and B. Past record shows that machine A produced
60% of the items of output and machine B produced 40% of the items. Further,
2% of the items produced by machine A and 1% produced by machine B were
defective. All the items are put into one stockpile and then one item is chosen at
random from this and is found to be defective. What is the probability that it was
produced by machine B?
9. Two groups are competing for the position on the Board of directors of a
corporation. The probabilities that the first and the second groups will win are
2019-20
PROBABILITY 557
0.6 and 0.4 respectively. Further, if the first group wins, the probability of
introducing a new product is 0.7 and the corresponding probability is 0.3 if the
second group wins. Find the probability that the new product introduced was by
the second group.
10. Suppose a girl throws a die. If she gets a 5 or 6, she tosses a coin three times and
notes the number of heads. If she gets 1, 2, 3 or 4, she tosses a coin once and
notes whether a head or tail is obtained. If she obtained exactly one head, what
is the probability that she threw 1, 2, 3 or 4 with the die?
11. A manufacturer has three machine operators A, B and C. The first operator A
produces 1% defective items, where as the other two operators B and C pro-
duce 5% and 7% defective items respectively. A is on the job for 50% of the
time, B is on the job for 30% of the time and C is on the job for 20% of the time.
A defective item is produced, what is the probability that it was produced by A?
12. A card from a pack of 52 cards is lost. From the remaining cards of the pack,
two cards are drawn and are found to be both diamonds. Find the probability of
the lost card being a diamond.
13. Probability that A speaks truth is
4
5
. A coin is tossed. A reports that a head
appears. The probability that actually there was head is
(A)
4
5
(B)
1
2
(C)
1
5
(D)
2
5
14. If A and B are two events such that A B and P(B) 0, then which of the
following is correct?
(A)
P (B)
P(A | B)
P(A)
=
(B) P(A|B) < P(A)
(C) P(A|B) P(A) (D) None of these
13.6 Random Variables and its Probability Distributions
We have already learnt about random experiments and formation of sample spaces. In
most of these experiments, we were not only interested in the particular outcome that
occurs but rather in some number associated with that outcomes as shown in following
examples/experiments.
(i) In tossing two dice, we may be interested in the sum of the numbers on the
two dice.
(ii) In tossing a coin 50 times, we may want the number of heads obtained.
2019-20
558 MATHEMATICS
(iii) In the experiment of taking out four articles (one after the other) at random
from a lot of 20 articles in which 6 are defective, we want to know the
number of defectives in the sample of four and not in the particular sequence
of defective and nondefective articles.
In all of the above experiments, we have a rule which assigns to each outcome of
the experiment a single real number. This single real number may vary with different
outcomes of the experiment. Hence, it is a variable. Also its value depends upon the
outcome of a random experiment and, hence, is called random variable. A random
variable is usually denoted by X.
If you recall the definition of a function, you will realise that the random variable X
is really speaking a function whose domain is the set of outcomes (or sample space) of
a random experiment. A random variable can take any real value, therefore, its
co-domain is the set of real numbers. Hence, a random variable can be defined as
follows :
Definition 4 A random variable is a real valued function whose domain is the sample
space of a random experiment.
For example, let us consider the experiment of tossing a coin two times in succession.
The sample space of the experiment is S = {HH, HT, TH, TT}.
If X denotes the number of heads obtained, then X is a random variable and for
each outcome, its value is as given below :
X (HH) = 2, X (HT) = 1, X (TH) = 1, X (TT) = 0.
More than one random variables can be defined on the same sample space. For
example, let Y denote the number of heads minus the number of tails for each outcome
of the above sample space S.
Then Y(HH) = 2, Y (HT) = 0, Y (TH) = 0, Y (TT) = 2.
Thus, X and Y are two different random variables defined on the same sample
space S.
Example 22 A person plays a game of tossing a coin thrice. For each head, he is
given Rs 2 by the organiser of the game and for each tail, he has to give Rs 1.50 to the
organiser. Let X denote the amount gained or lost by the person. Show that X is a
random variable and exhibit it as a function on the sample space of the experiment.
Solution X is a number whose values are defined on the outcomes of a random
experiment. Therefore, X is a random variable.
Now, sample space of the experiment is
S = {HHH, HHT, HTH, THH, HTT, THT, TTH, TTT}
2019-20
PROBABILITY 559
Then X (HHH) = Rs (2 × 3) = Rs 6
X(HHT) = X (HTH) = X (THH) = Rs (2 × 2
1 × 1.50) = Rs 2.50
X (HTT) = X (THT) = (TTH) = Rs (1 × 2)
(2 × 1.50) = Re 1
and X (TTT) = Rs (3 × 1.50) = Rs 4.50
where, minus sign shows the loss to the player. Thus, for each element of the sample
space, X takes a unique value, hence, X is a function on the sample space whose range
is
{– 1, 2.50, – 4.50, 6}
Example 23 A bag contains 2 white and 1 red balls. One ball is drawn at random and
then put back in the box after noting its colour. The process is repeated again. If X
denotes the number of red balls recorded in the two draws, describe X.
Solution Let the balls in the bag be denoted by w
1
, w
2
, r. Then the sample space is
S = {w
1
w
1
, w
1
w
2
, w
2
w
2
, w
2
w
1
, w
1
r, w
2
r, r w
1
, r w
2
, r r}
Now, for ω ∈ S
X (ω) = number of red balls
Therefore
X({w
1
w
1
}) = X ({w
1
w
2
}) = X({w
2
w
2
}) = X ({w
2
w
1
}) = 0
X({w
1
r}) = X ({w
2
r}) = X({r w
1
}) = X ({r w
2
}) = 1 and X ({r r}) = 2
Thus, X is a random variable which can take values 0, 1 or 2.
13.6.1 Probability distribution of a random variable
Let us look at the experiment of selecting one family out of ten families f
1
, f
2
,..., f
10
in
such a manner that each family is equally likely to be selected. Let the families f
1
, f
2
,
... , f
10
have 3, 4, 3, 2, 5, 4, 3, 6, 4, 5 members, respectively.
Let us select a family and note down the number of members in the family denoting
X. Clearly, X is a random variable defined as below :
X (f
1
) = 3, X (f
2
) = 4, X (f
3
) = 3, X (f
4
) = 2, X (f
5
) = 5,
X (f
6
) = 4, X (f
7
) = 3, X(f
8
) = 6, X(f
9
) = 4, X(f
10
) = 5
Thus, X can take any value 2,3,4,5 or 6 depending upon which family is selected.
Now, X will take the value 2 when the family f
4
is selected. X can take the value
3 when any one of the families f
1
, f
3
, f
7
is selected.
Similarly, X = 4, when family f
2
, f
6
or f
9
is selected,
X = 5, when family f
5
or f
10
is selected
and X = 6, when family f
8
is selected.
2019-20
560 MATHEMATICS
Since we had assumed that each family is equally likely to be selected, the probability
that family f
4
is selected is
1
10
.
Thus, the probability that X can take the value 2 is
1
10
. We write P(X = 2) =
1
10
Also, the probability that any one of the families f
1
, f
3
or f
7
is selected is
P({f
1
, f
3
, f
7
}) =
3
10
Thus, the probability that X can take the value 3 =
3
10
We write P(X = 3) =
3
10
Similarly, we obtain
P(X = 4) = P({f
2
, f
6
, f
9
}) =
3
10
P(X = 5) = P({f
5
, f
10
}) =
2
10
and P(X = 6) = P({f
8
}) =
1
10
Such a description giving the values of the random variable along with the
corresponding probabilities is called the probability distribution of the random
variable X.
In general, the probability distribution of a random variable X is defined as follows:
Definition 5 The probability distribution of a random variable X is the system of numbers
X : x
1
x
2
... x
n
P(X) : p
1
p
2
... p
n
where, = 1, i = 1, 2,..., n
The real numbers x
1
, x
2
,..., x
n
are the possible values of the random variable X and
p
i
(i = 1,2,..., n) is the probability of the random variable X taking the value x
i
i.e.,
P(X = x
i
) = p
i
2019-20
PROBABILITY 561
Note If x
i
is one of the possible values of a random variable X, the statement
X = x
i
is true only at some point (s) of the sample space. Hence, the probability that
X takes value x
i
is always nonzero, i.e. P(X = x
i
) 0.
Also for all possible values of the random variable X, all elements of the sample
space are covered. Hence, the sum of all the probabilities in a probability distribution
must be one.
Example 24 Two cards are drawn successively with replacement from a well-shuffled
deck of 52 cards. Find the probability distribution of the number of aces.
Solution The number of aces is a random variable. Let it be denoted by X. Clearly, X
can take the values 0, 1, or 2.
Now, since the draws are done with replacement, therefore, the two draws form
independent experiments.
Therefore, P(X = 0) = P(non-ace and non-ace)
= P(non-ace) × P(non-ace)
=
48 48 144
52 52 169
×=
P(X = 1) = P(ace and non-ace or non-ace and ace)
= P(ace and non-ace) + P(non-ace and ace)
= P(ace). P(non-ace) + P (non-ace) . P(ace)
=
4 48 48 4 24
52 52 52 52 169
×+×=
and P(X = 2) = P (ace and ace)
=
44 1
52 52 169
×=
Thus, the required probability distribution is
X 012
P(X)
144
169
24
169
1
169
Example 25 Find the probability distribution of number of doublets in three throws of
a pair of dice.
2019-20
562 MATHEMATICS
Solution Let X denote the number of doublets. Possible doublets are
(1,1) , (2,2), (3,3), (4,4), (5,5), (6,6)
Clearly, X can take the value 0, 1, 2, or 3.
Probability of getting a doublet
61
36 6
==
Probability of not getting a doublet
15
1
66
=− =
Now P(X = 0) = P (no doublet) =
5 5 5 125
6 6 6 216
××=
P(X = 1) = P (one doublet and two non-doublets)
=
155515551
666666666
××+××+××
=
2
2
1 5 75
3
6 216
6
×=
P(X = 2) = P (two doublets and one non-doublet)
=
2
115151511 1 5 15
3
666666666 6 216
6
××+××+××= × =
and P(X = 3) = P (three doublets)
=
111 1
6 6 6 216
××=
Thus, the required probability distribution is
X 012 3
P(X)
125
216
75
216
15
216
1
216
Verification Sum of the probabilities
1
n
i
i
p
=
=
125 75 15 1
216 216 216 216
+++
=
125 75 15 1 216
1
216 216
+++
==
2019-20
PROBABILITY 563
Example 26 Let X denote the number of hours you study during a randomly selected
school day. The probability that X can take the values x, has the following form, where
k is some unknown constant.
P(X = x) =
0. 1, if 0
, if 1or 2
(5 ), if 3or 4
0, otherwise
=
=
−=
x
kx x
kxx
(a) Find the value of k.
(b) What is the probability that you study at least two hours ? Exactly two hours? At
most two hours?
Solution The probability distribution of X is
X 0 12 3 4
P(X) 0.1 k 2k 2k k
(a) We know that
1
n
i
i
p
=
= 1
Therefore 0.1 + k + 2k + 2k + k = 1
i.e. k = 0.15
(b) P(you study at least two hours) = P(X 2)
= P(X = 2) + P (X = 3) + P (X = 4)
= 2k + 2k + k = 5k = 5 × 0.15 = 0.75
P(you study exactly two hours) = P(X = 2)
= 2k = 2 × 0.15 = 0.3
P(you study at most two hours) = P(X 2)
= P (X = 0) + P(X = 1) + P(X = 2)
= 0.1 + k + 2k = 0.1 + 3k = 0.1 + 3 × 0.15
= 0.55
13.6.2 Mean of a random variable
In many problems, it is desirable to describe some feature of the random variable by
means of a single number that can be computed from its probability distribution. Few
such numbers are mean, median and mode. In this section, we shall discuss mean only.
Mean is a measure of location or central tendency in the sense that it roughly locates a
middle or average value of the random variable.
2019-20
564 MATHEMATICS
Definition 6 Let X be a random variable whose possible values x
1
, x
2
, x
3
, ..., x
n
occur
with probabilities p
1
, p
2
, p
3
,..., p
n
, respectively. The mean of X, denoted by µ, is the
number
1
n
ii
i
xp
=
i.e. the mean of X is the weighted average of the possible values of X,
each value being weighted by its probability with which it occurs.
The mean of a random variable X is also called the expectation of X, denoted by
E(X).
Thus, E (X) = µ =
xp
ii
i
n
=
1
= x
1
p
1
+ x
2
p
2
+ ... + x
n
p
n
.
In other words, the mean or expectation of a random variable X is the sum of the
products of all possible values of X by their respective probabilities.
Example 27 Let a pair of dice be thrown and the random variable X be the sum of the
numbers that appear on the two dice. Find the mean or expectation of X.
Solution The sample space of the experiment consists of 36 elementary events in the
form of ordered pairs (x
i
, y
i
), where x
i
= 1, 2, 3, 4, 5, 6 and y
i
= 1, 2, 3, 4, 5, 6.
The random variable X i.e. the sum of the numbers on the two dice takes the
values 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 or 12.
Now P(X = 2) = P({(1,1)})
1
36
=
P(X = 3) = P({(1,2), (2,1)})
2
36
=
P(X = 4) = P({(1,3), (2,2), (3,1)})
3
36
=
P(X = 5) = P({(1,4), (2,3), (3,2), (4,1)})
4
36
=
P(X = 6) = P({(1,5), (2,4), (3,3), (4,2), (5,1)})
5
36
=
P(X = 7) = P({(1,6), (2,5), (3,4), (4,3), (5,2), (6,1)})
6
36
=
P(X = 8) = P({(2,6), (3,5), (4,4), (5,3), (6,2)})
5
36
=
2019-20
PROBABILITY 565
P(X = 9) = P({(3,6), (4,5), (5,4), (6,3)})
4
36
=
P(X = 10) = P({(4,6), (5,5), (6,4)})
3
36
=
P(X = 11) = P({(5,6), (6,5)})
2
36
=
P(X = 12) = P({(6,6)})
1
36
=
The probability distribution of X is
X or x
i
2 3 45678910 11 12
P(X) or p
i
1
36
2
36
3
36
4
36
5
36
6
36
5
36
4
36
3
36
2
36
1
36
Therefore,
µ = E(X) =
1
1234
2345
36 36 36 36
n
ii
i
xp
=
=×+×+×+×
565
678
36 36 36
+×+×+×
4321
9 10 11 12
36 36 36 36
+×+×+×+×
=
2 6 12 20 30 42 40 36 30 22 12
36
++++++++++
= 7
Thus, the mean of the sum of the numbers that appear on throwing two fair dice is 7.
13.6.3 Variance of a random variable
The mean of a random variable does not give us information about the variability in the
values of the random variable. In fact, if the variance is small, then the values of the
random variable are close to the mean. Also random variables with different probability
distributions can have equal means, as shown in the following distributions of X and Y.
X 1 234
P(X)
1
8
2
8
3
8
2
8
2019-20
566 MATHEMATICS
Y –1 0 4 5 6
P(Y)
1
8
2
8
3
8
1
8
1
8
Clearly E(X) =
1 2 3 2 22
1 2 3 4 2.75
8 8 8 88
× +× = =
and E(Y) =
1 2 3 1 1 22
1 0 4 5 6 2.75
888888
×+×+×+×=×= =
The variables X and Y are different, however their means are same. It is also
easily observable from the diagramatic representation of these distributions (Fig 13.5).
Fig 13.5
To distinguish X from Y, we require a measure of the extent to which the values of
the random variables spread out. In Statistics, we have studied that the variance is a
measure of the spread or scatter in data. Likewise, the variability or spread in the
values of a random variable may be measured by variance.
Definition 7 Let X be a random variable whose possible values x
1
, x
2
,...,x
n
occur with
probabilities p(x
1
), p(x
2
),..., p(x
n
) respectively.
Let µ = E (X) be the mean of X. The variance of X, denoted by Var (X) or
2
x
σ
is
defined as
2
x
σ
=
2
1
Var (X)= (
) ()
n
i
i
i
x px
=
or equivalently
2
x
σ
= E(X µ)
2
O
1
8
2
8
3
8
P(Y)
O
1
8
2
8
3
8
P(X)
1234 1234
–1
56
(i) (ii)
2019-20
PROBABILITY 567
The non-negative number
σ
x
=
2
1
Var(X) = (
) ()
n
i
i
i
x px
=
is called the standard deviation of the random variable X.
Another formula to find the variance of a random variable. We know that,
Var (X) =
2
1
(
) ()
n
i i
i
x px
=
=
=
2 2
1 1 1
()
() 2 ()
n n n
ii i ii
i i i
x px px xpx
= = =
+−

=
2 2
1 1 1
()
()2 ()
n n n
ii i ii
i i i
x px px xpx
= = =
+−

=
2 22
1 =1 1
()
2since ( ) =1and = ()
n
nn
ii i
ii
i i i
x px px xpx
= =
+−

=
2 2
1
()
n
ii
i
x px
=
or Var (X) =
2
2
11
() ()
n n
ii
ii
i i
x px xpx
= =




or Var (X) = E(X
2
) [E(X)]
2
, where E(X
2
) =
2
1
()
n
ii
i
x px
=
Example 28 Find the variance of the number obtained on a throw of an unbiased die.
Solution The sample space of the experiment is S = {1, 2, 3, 4, 5, 6}.
Let X denote the number obtained on the throw. Then X is a random variable
which can take values 1, 2, 3, 4, 5, or 6.
2019-20
568 MATHEMATICS
Also P(1) = P(2) = P(3) = P(4) = P(5) = P(6) =
1
6
Therefore, the Probability distribution of X is
X 123 4 56
P(X)
1
6
1
6
1
6
1
6
1
6
1
6
Now E(X) =
xpx
ii
i
n
()
=
1
=
1 1 1 1 1 1 21
123456
6666666
×+×+×+×+×+×=
Also E(X
2
) =
222222
11111191
123456
6666666
×+ ×+ ×+ ×+ ×+ ×=
Thus, Var (X) = E (X
2
) (E(X))
2
=
2
91 21 91 441
6 6 6 36

=−


35
12
=
Example 29 Two cards are drawn simultaneously (or successively without replacement)
from a well shuffled pack of 52 cards. Find the mean, variance and standard deviation
of the number of kings.
Solution Let X denote the number of kings in a draw of two cards. X is a random
variable which can assume the values 0, 1 or 2.
Now P(X = 0) = P (no king)
48
2
52
2
48!
C
48 47 188
2!(48 2)!
52!
52 51 221
C
2!(52 2)!
×
== = =
×
P(X = 1) = P (one king and one non-king)
4 48
11
52
2
CC
C
=
=
4 48 2 32
52 51 221
××
=
×
2019-20
PROBABILITY 569
and P(X = 2) = P (two kings) =
4
2
52
2
C
43 1
52 51 221
C
×
==
×
Thus, the probability distribution of X is
X 012
P(X)
188
221
32
221
1
221
Now Mean of X = E(X) =
xpx
ii
i
n
()
=
1
=
188 32 1 34
012
221 221 221 221
×+×+×=
Also E(X
2
) =
2
1
()
n
ii
i
x px
=
=
2 2 2
188 32 1 36
012
221 221 221 221
×+×+×=
Now Var(X) = E(X
2
) [E(X)]
2
=
2
2
36 34 6800
221 221
(221)

=


Therefore σ
x
=
6800
Var(X) 0.37
221
==
EXERCISE 13.4
1. State which of the following are not the probability distributions of a random
variable. Give reasons for your answer.
(i) X 0 12
P(X) 0.4 0.4 0.2
(ii) X 0 1 2 34
P(X) 0.1 0.5 0.2 0.1 0.3
2019-20
570 MATHEMATICS
(iii) Y 1 0 1
P(Y) 0.6 0.1 0.2
(iv) Z 32 1 0–1
P(Z) 0.3 0.2 0.4 0.1 0.05
2. An urn contains 5 red and 2 black balls. Two balls are randomly drawn. Let X
represent the number of black balls. What are the possible values of X? Is X a
random variable ?
3. Let X represent the difference between the number of heads and the number of
tails obtained when a coin is tossed 6 times. What are possible values of X?
4. Find the probability distribution of
(i) number of heads in two tosses of a coin.
(ii) number of tails in the simultaneous tosses of three coins.
(iii) number of heads in four tosses of a coin.
5. Find the probability distribution of the number of successes in two tosses of a die,
where a success is defined as
(i) number greater than 4
(ii) six appears on at least one die
6. From a lot of 30 bulbs which include 6 defectives, a sample of 4 bulbs is drawn
at random with replacement. Find the probability distribution of the number of
defective bulbs.
7. A coin is biased so that the head is 3 times as likely to occur as tail. If the coin is
tossed twice, find the probability distribution of number of tails.
8. A random variable X has the following probability distribution:
X 0 123 456 7
P(X) 0 k 2k 2k 3k k
2
2k
2
7k
2
+k
Determine
(i) k (ii) P(X < 3)
(iii) P(X > 6) (iv) P(0 < X < 3)
2019-20
PROBABILITY 571
9. The random variable X has a probability distribution P(X) of the following form,
where k is some number :
P(X) =
,0
2, 1
3, 2
0, otherwise
k if x
k if x
k if x
=
=
=
(a) Determine the value of k.
(b) Find P (X < 2), P (X 2), P(X 2).
10. Find the mean number of heads in three tosses of a fair coin.
11. Two dice are thrown simultaneously. If X denotes the number of sixes, find the
expectation of X.
12. Two numbers are selected at random (without replacement) from the first six
positive integers. Let X denote the larger of the two numbers obtained. Find
E(X).
13. Let X denote the sum of the numbers obtained when two fair dice are rolled.
Find the variance and standard deviation of X.
14. A class has 15 students whose ages are 14, 17, 15, 14, 21, 17, 19, 20, 16, 18, 20,
17, 16, 19 and 20 years. One student is selected in such a manner that each has
the same chance of being chosen and the age X of the selected student is
recorded. What is the probability distribution of the random variable X? Find
mean, variance and standard deviation of X.
15. In a meeting, 70% of the members favour and 30% oppose a certain proposal.
A member is selected at random and we take X = 0 if he opposed, and X = 1 if
he is in favour. Find E(X) and Var (X).
Choose the correct answer in each of the following:
16. The mean of the numbers obtained on throwing a die having written 1 on three
faces, 2 on two faces and 5 on one face is
(A) 1 (B) 2 (C) 5 (D)
8
3
17. Suppose that two cards are drawn at random from a deck of cards. Let X be the
number of aces obtained. Then the value of E(X) is
(A)
37
221
(B)
5
13
(C)
1
13
(D)
2
13
2019-20
572 MATHEMATICS
13.7 Bernoulli Trials and Binomial Distribution
13.7.1 Bernoulli trials
Many experiments are dichotomous in nature. For example, a tossed coin shows a
head or tail, a manufactured item can be defective or non-defective, the response
to a question might be yes or no, an egg has hatched or not hatched’, the decision
is yes or no etc. In such cases, it is customary to call one of the outcomes a success
and the other not success or failure. For example, in tossing a coin, if the occurrence
of the head is considered a success, then occurrence of tail is a failure.
Each time we toss a coin or roll a die or perform any other experiment, we call it a
trial. If a coin is tossed, say, 4 times, the number of trials is 4, each having exactly two
outcomes, namely, success or failure. The outcome of any trial is independent of the
outcome of any other trial. In each of such trials, the probability of success or failure
remains constant. Such independent trials which have only two outcomes usually
referred as success or failure are called Bernoulli trials.
Definition 8 Trials of a random experiment are called Bernoulli trials, if they satisfy
the following conditions :
(i) There should be a finite number of trials.
(ii) The trials should be independent.
(iii) Each trial has exactly two outcomes : success or failure.
(iv) The probability of success remains the same in each trial.
For example, throwing a die 50 times is a case of 50 Bernoulli trials, in which each
trial results in success (say an even number) or failure (an odd number) and the
probability of success (p) is same for all 50 throws. Obviously, the successive throws
of the die are independent experiments. If the die is fair and have six numbers 1 to 6
written on six faces, then p =
1
2
and q = 1 – p =
1
2
= probability of failure.
Example 30 Six balls are drawn successively from an urn containing 7 red and 9 black
balls. Tell whether or not the trials of drawing balls are Bernoulli trials when after each
draw the ball drawn is
(i) replaced (ii) not replaced in the urn.
Solution
(i) The number of trials is finite. When the drawing is done with replacement, the
probability of success (say, red ball) is p =
7
16
which is same for all six trials
(draws). Hence, the drawing of balls with replacements are Bernoulli trials.
2019-20
PROBABILITY 573
(ii) When the drawing is done without replacement, the probability of success
(i.e., red ball) in first trial is
7
16
, in 2nd trial is
6
15
if the first ball drawn is red or
7
15
if the first ball drawn is black and so on. Clearly, the probability of success is
not same for all trials, hence the trials are not Bernoulli trials.
13.7.2 Binomial distribution
Consider the experiment of tossing a coin in which each trial results in success (say,
heads) or failure (tails). Let S and F denote respectively success and failure in each
trial. Suppose we are interested in finding the ways in which we have one success in
six trials.
Clearly, six different cases are there as listed below:
SFFFFF, FSFFFF, FFSFFF, FFFSFF, FFFFSF, FFFFFS.
Similarly, two successes and four failures can have
6!
4! 2!
×
combinations. It will be
lengthy job to list all of these ways. Therefore, calculation of probabilities of 0, 1, 2,...,
n number of successes may be lengthy and time consuming. To avoid the lengthy
calculations and listing of all the possible cases, for the probabilities of number of
successes in n-Bernoulli trials, a formula is derived. For this purpose, let us take the
experiment made up of three Bernoulli trials with probabilities p and q = 1 p for
success and failure respectively in each trial. The sample space of the experiment is
the set
S = {SSS, SSF, SFS, FSS, SFF, FSF, FFS, FFF}
The number of successes is a random variable X and can take values 0, 1, 2, or 3.
The probability distribution of the number of successes is as below :
P(X = 0) = P(no success)
= P({FFF}) = P(F) P(F) P(F)
= q . q . q = q
3
since the trials are independent
P(X = 1) = P(one successes)
= P({SFF, FSF, FFS})
= P({SFF}) + P({FSF}) + P({FFS})
= P(S) P(F) P(F) + P(F) P(S) P(F) + P(F) P(F) P(S)
= p.q.q + q.p.q + q.q.p = 3pq
2
P(X = 2) = P (two successes)
= P({SSF, SFS, FSS})
= P({SSF}) + P ({SFS}) + P({FSS})
2019-20
574 MATHEMATICS
= P(S) P(S) P(F) + P(S) P(F) P(S) + P(F) P(S) P(S)
= p.p.q. + p.q.p + q.p.p = 3p
2
q
and P(X = 3) = P(three success) = P ({SSS})
= P(S) . P(S) . P(S) = p
3
Thus, the probability distribution of X is
X 0123
P(X) q
3
3q
2
p 3qp
2
p
3
Also, the binominal expansion of (q + p)
3
is
q q p qp p
3
3
2
3
2
3
+++
Note that the probabilities of 0, 1, 2 or 3 successes are respectively the 1st, 2nd,
3rd and 4th term in the expansion of (q + p)
3
.
Also, since q + p = 1, it follows that the sum of these probabilities, as expected, is 1.
Thus, we may conclude that in an experiment of n-Bernoulli trials, the probabilities
of 0, 1, 2,..., n successes can be obtained as 1st, 2nd,...,(n + 1)
th
terms in the expansion
of (q + p)
n
. To prove this assertion (result), let us find the probability of x-successes in
an experiment of n-Bernoulli trials.
Clearly, in case of x successes (S), there will be (n x) failures (F).
Now, x successes (S) and (n x) failures (F) can be obtained in
!
!( )!
n
xn x
ways.
In each of these ways, the probability of x successes and (n x) failures is
= P(x successes) . P(n–x) failures is
=
times ( ) times
P(S).P (S)...P(S) P (F).P (F)...P(F)
x nx
= p
x
q
n–x
Thus, the probability of x successes in n-Bernoulli trials is
!
!( )!
n
xnx
p
x
q
nx
or
n
C
x
p
x
q
nx
Thus P(x successes) =
C
n x nx
x
pq
, x = 0, 1, 2,...,n. (q = 1 – p)
Clearly, P(x successes), i.e.
C
n x nx
x
pq
is the (x + 1)
th
term in the binomial
expansion of (q + p)
n
.
Thus, the probability distribution of number of successes in an experiment consisting
of n Bernoulli trials may be obtained by the binomial expansion of (q + p)
n
. Hence, this
2019-20
PROBABILITY 575
distribution of number of successes X can be written as
X 0 1 2 ... x ... n
P (X)
n
C
0
q
n n
C
1
q
n–1
p
1 n
C
2
q
n–2
p
2 n
C
x
q
n–x
p
x n
C
n
p
n
The above probability distribution is known as binomial distribution with parameters
n and p, because for given values of n and p, we can find the complete probability
distribution.
The probability of x successes P(X = x) is also denoted by P(x) and is given by
P (x) =
n
C
x
q
n–x
p
x
, x = 0, 1,..., n. (q = 1 p)
This P (x) is called the probability function of the binomial distribution.
A binomial distribution with n-Bernoulli trials and probability of success in each
trial as p, is denoted by B (n, p).
Let us now take up some examples.
Example 31 If a fair coin is tossed 10 times, find the probability of
(i) exactly six heads
(ii) at least six heads
(iii) at most six heads
Solution The repeated tosses of a coin are Bernoulli trials. Let X denote the number
of heads in an experiment of 10 trials.
Clearly, X has the binomial distribution with n = 10 and p =
1
2
Therefore P(X = x) =
n
C
x
q
n–x
p
x
, x = 0, 1, 2,...,n
Here n = 10,
1
2
p
=
, q = 1 – p =
1
2
Therefore P(X = x) =
10 10
10 10
11 1
C C
22 2
xx
xx
 
=
 
 
Now (i) P(X = 6) =
10
10
6
10
1 10! 1 105
C
2 6! 4! 512
2

==

×

(ii) P(at least six heads) = P(X 6)
= P (X = 6) + P (X = 7) + P (X = 8) + P(X = 9) + P (X = 10)
2019-20
576 MATHEMATICS
=
10 10 10 10 10
10 10 10 10 10
6 7 8 9 10
1111 1
CCCCC
2222 2
   
++++
   
   
=
193
512
=
(iii) P(at most six heads) = P(X 6)
= P (X = 0) + P (X = 1) + P (X = 2) + P (X = 3)
+ P (X = 4) + P (X = 5) + P (X = 6)
=
10 10 10 10
10 10 10
1 2 3
1111
CC C
2222
   
++ +
   
   
+
10 10 10
10 10 10
4 5 6
111
CCC
222
  
++
  
  
=
848 53
1024 64
=
Example 32 Ten eggs are drawn successively with replacement from a lot containing
10% defective eggs. Find the probability that there is at least one defective egg.
Solution Let X denote the number of defective eggs in the 10 eggs drawn. Since the
drawing is done with replacement, the trials are Bernoulli trials. Clearly, X has the
binomial distribution with n = 10 and
10 1
100 10
p
==
.
Therefore q =
9
1
10
p
−=
Now P(at least one defective egg) = P(X 1) = 1 – P (X = 0)
=
10
10
0
9
1C
10



=
10
10
9
1
10
EXERCISE 13.5
1. A die is thrown 6 times. If getting an odd number is a success, what is the
probability of
(i) 5 successes? (ii) at least 5 successes?
(iii) at most 5 successes?
2019-20
PROBABILITY 577
2. A pair of dice is thrown 4 times. If getting a doublet is considered a success, find
the probability of two successes.
3. There are 5% defective items in a large bulk of items. What is the probability
that a sample of 10 items will include not more than one defective item?
4. Five cards are drawn successively with replacement from a well-shuffled deck
of 52 cards. What is the probability that
(i) all the five cards are spades?
(ii) only 3 cards are spades?
(iii) none is a spade?
5. The probability that a bulb produced by a factory will fuse after 150 days of use
is 0.05. Find the probability that out of 5 such bulbs
(i) none
(ii) not more than one
(iii) more than one
(iv) at least one
will fuse after 150 days of use.
6. A bag consists of 10 balls each marked with one of the digits 0 to 9. If four balls
are drawn successively with replacement from the bag, what is the probability
that none is marked with the digit 0?
7. In an examination, 20 questions of true-false type are asked. Suppose a student
tosses a fair coin to determine his answer to each question. If the coin falls
heads, he answers 'true'; if it falls tails, he answers 'false'. Find the probability
that he answers at least 12 questions correctly.
8. Suppose X has a binomial distribution
. Show that X = 3 is the most
likely outcome.
(Hint : P(X = 3) is the maximum among all P(x
i
), x
i
= 0,1,2,3,4,5,6)
9. On a multiple choice examination with three possible answers for each of the
five questions, what is the probability that a candidate would get four or more
correct answers just by guessing ?
10. A person buys a lottery ticket in 50 lotteries, in each of which his chance of
winning a prize is
1
100
. What is the probability that he will win a prize
(a) at least once (b) exactly once (c) at least twice?
2019-20
578 MATHEMATICS
11. Find the probability of getting 5 exactly twice in 7 throws of a die.
12. Find the probability of throwing at most 2 sixes in 6 throws of a single die.
13. It is known that 10% of certain articles manufactured are defective. What is the
probability that in a random sample of 12 such articles, 9 are defective?
In each of the following, choose the correct answer:
14. In a box containing 100 bulbs, 10 are defective. The probability that out of a
sample of 5 bulbs, none is defective is
(A) 10
–1
(B)
5
1
2



(C)
5
9
10



(D)
9
10
15. The probability that a student is not a swimmer is
1
.
5
Then the probability that
out of five students, four are swimmers is
(A)
4
5
4
41
C
55



(B)
4
41
55



(C)
4
5
1
14
C
55



(D) None of these
Miscellaneous Examples
Example 33 Coloured balls are distributed in four boxes as shown in the following
table:
Box Colour
Black White Red Blue
I 3 45 6
II 2 22 2
III 1 23 1
IV 4 31 5
A box is selected at random and then a ball is randomly drawn from the selected
box. The colour of the ball is black, what is the probability that ball drawn is from the
box III?
2019-20
PROBABILITY 579
Solution Let A, E
1
, E
2
, E
3
and E
4
be the events as defined below :
A : a black ball is selected E
1
: box I is selected
E
2
: box II is selected E
3
: box III is selected
E
4
: box IV is selected
Since the boxes are chosen at random,
Therefore P(E
1
) = P(E
2
) = P(E
3
) = P(E
4
) =
1
4
Also P(A|E
1
) =
3
18
, P(A|E
2
) =
2
8
, P(A|E
3
) =
1
7
and P (A|E
4
) =
4
13
P(box III is selected, given that the drawn ball is black) = P(E
3
|A). By Bayes'
theorem,
P(E
3
|A) =
3 3
112 23 34 4
P(E ) P(A|E )
P(E )P(A|E ) P(E ) P(A|E ) + P(E ) P (A|E ) P(E ) P(A|E
)
+ +
=
11
47
0.165
1 3 11 111 4
4 18 4 4 4 7 4 13
×
=
× +×+×
Example 34 Find the mean of the Binomial distribution
B4
1
3
,
.
Solution Let X be the random variable whose probability distribution is
B4
1
3
,
.
Here n = 4, p =
1
3
and q =
12
1
33
−=
We know that P(X = x) =
4
4
2
3
1
3
C
x
xx
, x = 0, 1, 2, 3, 4.
i.e. the distribution of X is
x
i
P(x
i
) x
i
P(x
i
)
0
4
0
4
2
3
C
0
1
4
1
3
2
3
1
3
C
4
1
3
2
3
1
3
C
2019-20
580 MATHEMATICS
2
4
2
22
2
3
1
3
C
2
2
3
1
3
4
2
22
C
3
4
3
3
2
3
1
3
C
3
2
3
1
3
4
3
3
C
4
4
4
4
1
3
C
4
1
3
4
4
4
C
Now Mean (µ) =
4
1
()
ii
i
xpx
=
=
3 22
4 4
1 2
21 21
0 C 2C
33 33
 
+ +⋅
 
 
+
3
2
3
1
3
4
1
3
4
3
3
4
4
4
+⋅
C C
=
3 2
4 4 4 4
2 2 21
4 26 34 41
3 3 33
× +×× × +××
=
4
32 48 24 4 108 4
81 3
3
+++
==
Example 35 The probability of a shooter hitting a target is
3
4
. How many minimum
number of times must he/she fire so that the probability of hitting the target at least
once is more than 0.99?
Solution Let the shooter fire n times. Obviously, n fires are n Bernoulli trials. In each
trial, p = probability of hitting the target =
3
4
and q = probability of not hitting the
target =
1
4
. Then P(X = x) =
13 3
CC C
44
4
nx x
x
n nx x n n
x x x
n
qp

= =


.
Now, given that,
P(hitting the target at least once) > 0.99
i.e. P(x 1) > 0.99
2019-20
PROBABILITY 581
Therefore, 1 – P (x = 0) > 0.99
or
0
1
1C
4
n
n
> 0.99
or
0
1 1
C 0.01 i.e.
4 4
<
n
n n
< 0.01
or 4
n
>
1
0.01
= 100 ... (1)
The minimum value of n to satisfy the inequality (1) is 4.
Thus, the shooter must fire 4 times.
Example 36 A and B throw a die alternatively till one of them gets a ‘6and wins the
game. Find their respective probabilities of winning, if A starts first.
Solution Let S denote the success (getting a ‘6’) and F denote the failure (not getting
a ‘6).
Thus, P(S) =
15
, P(F)
66
=
P(A wins in the first throw) = P(S) =
1
6
A gets the third throw, when the first throw by A and second throw by B result into
failures.
Therefore, P(A wins in the 3rd throw) = P(FFS) =
551
P(F) P(F) P(S) =
666
=
2
51
66

×


P(A wins in the 5th throw) = P (FFFFS)
=
5
6
1
6
4
and so on.
Hence, P(A wins) =
1
6
5
6
1
6
5
6
1
6
2 4
+
+
+...
=
1
6
25
1
36
=
6
11
2019-20
582 MATHEMATICS
P(B wins) = 1 P (A wins) =
65
1
11 11
−=
Remark If a + ar + ar
2
+ ... + ar
n–1
+ ..., where | r | < 1, then sum of this infinite G.P.
is given by
.
1
a
r
(Refer A.1.3 of Class XI Text book).
Example 37 If a machine is correctly set up, it produces 90% acceptable items. If it is
incorrectly set up, it produces only 40% acceptable items. Past experience shows that
80% of the set ups are correctly done. If after a certain set up, the machine produces
2 acceptable items, find the probability that the machine is correctly setup.
Solution Let A be the event that the machine produces 2 acceptable items.
Also let B
1
represent the event of correct set up and B
2
represent the event of
incorrect setup.
Now P(B
1
) = 0.8, P(B
2
) = 0.2
P(A|B
1
) = 0.9 × 0.9 and P(A|B
2
) = 0.4 × 0.4
Therefore P(B
1
|A) =
11
1 12 2
P (B ) P (A|B )
P (B ) P (A|B ) + P (B ) P(A|B )
=
0.8 × 0.9 × 0.9 648
0.95
0.8× 0.9 × 0.9 + 0.2 × 0.4 × 0.4 680
==
Miscellaneous Exercise on Chapter 13
1. A and B are two events such that P (A) 0. Find P(B|A), if
(i) A is a subset of B (ii) A B = φ
2. A couple has two children,
(i) Find the probability that both children are males, if it is known that at least
one of the children is male.
(ii) Find the probability that both children are females, if it is known that the
elder child is a female.
3. Suppose that 5% of men and 0.25% of women have grey hair. A grey haired
person is selected at random. What is the probability of this person being male?
Assume that there are equal number of males and females.
4. Suppose that 90% of people are right-handed. What is the probability that
at most 6 of a random sample of 10 people are right-handed?
2019-20
PROBABILITY 583
5. An urn contains 25 balls of which 10 balls bear a mark 'X' and the remaining 15
bear a mark 'Y'. A ball is drawn at random from the urn, its mark is noted down
and it is replaced. If 6 balls are drawn in this way, find the probability that
(i) all will bear 'X' mark.
(ii) not more than 2 will bear 'Y' mark.
(iii) at least one ball will bear 'Y' mark.
(iv) the number of balls with 'X' mark and 'Y' mark will be equal.
6. In a hurdle race, a player has to cross 10 hurdles. The probability that he will
clear each hurdle is
5
6
. What is the probability that he will knock down fewer
than 2 hurdles?
7. A die is thrown again and again until three sixes are obtained. Find the probabil-
ity of obtaining the third six in the sixth throw of the die.
8. If a leap year is selected at random, what is the chance that it will contain 53
tuesdays?
9. An experiment succeeds twice as often as it fails. Find the probability that in the
next six trials, there will be atleast 4 successes.
10. How many times must a man toss a fair coin so that the probability of having
at least one head is more than 90%?
11. In a game, a man wins a rupee for a six and loses a rupee for any other number
when a fair die is thrown. The man decided to throw a die thrice but to quit as
and when he gets a six. Find the expected value of the amount he wins / loses.
12. Suppose we have four boxes A,B,C and D containing coloured marbles as given
below:
Box Marble colour
Red White Black
A 1 6 3
B 6 2 2
C 8 1 1
D 0 6 4
One of the boxes has been selected at random and a single marble is drawn from
it. If the marble is red, what is the probability that it was drawn from box A?, box B?,
box C?
2019-20
584 MATHEMATICS
13. Assume that the chances of a patient having a heart attack is 40%. It is also
assumed that a meditation and yoga course reduce the risk of heart attack by
30% and prescription of certain drug reduces its chances by 25%. At a time a
patient can choose any one of the two options with equal probabilities. It is given
that after going through one of the two options the patient selected at random
suffers a heart attack. Find the probability that the patient followed a course of
meditation and yoga?
14. If each element of a second order determinant is either zero or one, what is the
probability that the value of the determinant is positive? (Assume that the indi-
vidual entries of the determinant are chosen independently, each value being
assumed with probability
1
2
).
15. An electronic assembly consists of two subsystems, say, A and B. From previ-
ous testing procedures, the following probabilities are assumed to be known:
P(A fails) = 0.2
P(B fails alone) = 0.15
P(A and B fail) = 0.15
Evaluate the following probabilities
(i) P(A fails|B has failed) (ii) P(A fails alone)
16. Bag I contains 3 red and 4 black balls and Bag II contains 4 red and 5 black balls.
One ball is transferred from Bag I to Bag II and then a ball is drawn from Bag II.
The ball so drawn is found to be red in colour. Find the probability that the
transferred ball is black.
Choose the correct answer in each of the following:
17. If A and B are two events such that P(A) 0 and P(B | A) = 1, then
(A) A B (B) B A (C) B = φ (D) A = φ
18. If P(A|B) > P(A), then which of the following is correct :
(A) P(B|A) < P(B) (B) P(A B) < P(A) . P(B)
(C) P(B|A) > P(B) (D) P(B|A) = P(B)
19. If A and B are any two events such that P(A) + P(B) – P(A and B) = P(A), then
(A) P(B|A) = 1 (B) P(A|B) = 1
(C) P(B|A) = 0 (D) P(A|B) = 0
2019-20
PROBABILITY 585
Summary
The salient features of the chapter are
The conditional probability of an event E, given the occurrence of the event F
is given by
P (E F)
P(E | F)
P(F)
=
, P(F) 0
0 P (E|F) 1, P (E|F) = 1 P (E|F)
P ((E F)|G) = P (E|G) + P (F|G) – P ((E F)|G)
P (E F) = P (E) P (F|E), P (E) 0
P (E F) = P (F) P (E|F), P (F) 0
If E and F are independent, then
P (E F) = P (E) P (F)
P (E|F) = P (E), P (F) 0
P (F|E) = P (F), P(E) 0
Theorem of total probability
Let {E
1
, E
2
, ...,E
n
) be a partition of a sample space and suppose that each of
E
1
, E
2
, ..., E
n
has nonzero probability. Let A be any event associated with S,
then
P(A) = P(E
1
) P (A|E
1
) + P (E
2
) P (A|E
2
) + ... + P (E
n
) P(A|E
n
)
Bayes' theorem If E
1
, E
2
, ..., E
n
are events which constitute a partition of
sample space S, i.e. E
1
, E
2
, ..., E
n
are pairwise disjoint and E
1
E
2
... E
n
= S
and A be any event with nonzero probability, then
P(E A
P(E )P(A|E )
P(E )P(A|E )
ii
i
j j
j
n
|)=
=
1
A random variable is a real valued function whose domain is the sample
space of a random experiment.
The probability distribution of a random variable X is the system of numbers
X : x
1
x
2
... x
n
P(X) : p
1
p
2
... p
n
where,
1
0, 1, 1, 2, ...,
n
ii
i
p pi n
=
> ==
2019-20
586 MATHEMATICS
Let X be a random variable whose possible values x
1
, x
2
, x
3
, ..., x
n
occur with
probabilities p
1
, p
2
, p
3
, ... p
n
respectively. The mean of X, denoted by µ, is
the number
xp
ii
i
n
=
1
.
The mean of a random variable X is also called the expectation of X, denoted
by E (X).
Let X be a random variable whose possible values x
1
, x
2
, ..., x
n
occur with
probabilities p(x
1
), p(x
2
), ..., p(x
n
) respectively.
Let µ = E(X) be the mean of X. The variance of X, denoted by Var (X) or
σ
x
2
, is defined as
or equivalently σ
x
2
= E (X – µ)
2
The non-negative number
is called the standard deviation of the random variable X.
Var (X) = E (X
2
) [E(X)]
2
Trials of a random experiment are called Bernoulli trials, if they satisfy the
following conditions :
(i) There should be a finite number of trials.
(ii) The trials should be independent.
(iii) Each trial has exactly two outcomes : success or failure.
(iv) The probability of success remains the same in each trial.
For Binomial distribution B (n, p), P (X = x) =
n
C
x
q
n–x
p
x
, x = 0, 1,..., n
(q = 1 p)
Historical Note
The earliest indication on measurement of chances in game of dice appeared
in 1477 in a commentary on Dante's Divine Comedy. A treatise on gambling
named liber de Ludo Alcae, by Geronimo Carden (1501-1576) was published
posthumously in 1663. In this treatise, he gives the number of favourable cases
for each event when two dice are thrown.
2019-20
PROBABILITY 587
Galileo (1564-1642) gave casual remarks concerning the correct evaluation
of chance in a game of three dice. Galileo analysed that when three dice are
thrown, the sum of the number that appear is more likely to be 10 than the sum 9,
because the number of cases favourable to 10 are more than the number of
cases for the appearance of number 9.
Apart from these early contributions, it is generally acknowledged that the
true origin of the science of probability lies in the correspondence between two
great men of the seventeenth century, Pascal (1623-1662) and Pierre de Fermat
(1601-1665). A French gambler, Chevalier de Metre asked Pascal to explain
some seeming contradiction between his theoretical reasoning and the
observation gathered from gambling. In a series of letters written around 1654,
Pascal and Fermat laid the first foundation of science of probability. Pascal solved
the problem in algebraic manner while Fermat used the method of combinations.
Great Dutch Scientist, Huygens (1629-1695), became acquainted with the
content of the correspondence between Pascal and Fermat and published a first
book on probability, "De Ratiociniis in Ludo Aleae" containing solution of many
interesting rather than difficult problems on probability in games of chances.
The next great work on probability theory is by Jacob Bernoulli (1654-1705),
in the form of a great book, "Ars Conjectendi" published posthumously in 1713
by his nephew, Nicholes Bernoulli. To him is due the discovery of one of the most
important probability distribution known as Binomial distribution. The next
remarkable work on probability lies in 1993. A. N. Kolmogorov (1903-1987) is
credited with the axiomatic theory of probability. His book, ‘Foundations of
probability’ published in 1933, introduces probability as a set function and is
considered a ‘classic!’.
2019-20