
APPLICATION OF INTEGRALS 377
The area of the region enclosed between two curves y = f (x), y = g (x) and
the lines x = a, x = b is given by the formula,
b
a
∫
, where, f (x) ≥ g (x) in [a, b]
If f (x) ≥ g (x) in [a, c] and f (x) ≤ g (x) in [c, b], a < c < b, then
c b
a c
f x g x dx g x f x dx= −+−
.
Historical Note
The origin of the Integral Calculus goes back to the early period of development
of Mathematics and it is related to the method of exhaustion developed by the
mathematicians of ancient Greece. This method arose in the solution of problems
on calculating areas of plane figures, surface areas and volumes of solid bodies
etc. In this sense, the method of exhaustion can be regarded as an early method
of integration. The greatest development of method of exhaustion in the early
period was obtained in the works of Eudoxus (440 B.C.) and Archimedes
(300 B.C.)
Systematic approach to the theory of Calculus began in the 17th century.
In 1665, Newton began his work on the Calculus described by him as the theory
of fluxions and used his theory in finding the tangent and radius of curvature at
any point on a curve. Newton introduced the basic notion of inverse function
called the anti derivative (indefinite integral) or the inverse method of tangents.
During 1684-86, Leibnitz published an article in the Acta Eruditorum
which he called Calculas summatorius, since it was connected with the summation
of a number of infinitely small areas, whose sum, he indicated by the symbol ‘∫’.
In 1696, he followed a suggestion made by J. Bernoulli and changed this article to
Calculus integrali. This corresponded to Newton’s inverse method of tangents.
Both Newton and Leibnitz adopted quite independent lines of approach which
was radically different. However, respective theories accomplished results that
were practically identical. Leibnitz used the notion of definite integral and what is
quite certain is that he first clearly appreciated tie up between the antiderivative
and the definite integral.
Conclusively, the fundamental concepts and theory of Integral Calculus
and primarily its relationships with Differential Calculus were developed in the
work of P.de Fermat, I. Newton and G. Leibnitz at the end of 17th century.