392 MATHEMATICS
We now consider some examples.
Example 7
Two dice are thrown and the sum of the numbers which come up on the
dice is noted. Let us consider the following events associated with this experiment
A: ‘the sum is even’.
B: ‘the sum is a multiple of 3’.
C: ‘the sum is less than 4’.
D: ‘the sum is greater than 11’.
Which pairs of these events are mutually exclusive?
Solution
There are 36 elements in the sample space S = {(x, y): x, y = 1, 2, 3, 4, 5, 6}.
Then
A = {(1, 1), (1, 3), (1, 5), (2, 2), (2, 4), (2, 6), (3, 1), (3, 3), (3, 5), (4, 2), (4, 4),
(4, 6), (5, 1), (5, 3), (5, 5), (6, 2), (6, 4), (6, 6)}
B = {(1, 2), (2, 1), (1, 5), (5, 1), (3, 3), (2, 4), (4, 2), (3, 6), (6, 3), (4, 5), (5, 4),
(6, 6)}
C = {(1, 1), (2, 1), (1, 2)} and D = {(6, 6)}
We find that
A ∩ B = {(1, 5), (2, 4), (3, 3), (4, 2), (5, 1), (6, 6)} ≠ φ
Therefore, A and B are not mutually exclusive events.
Similarly A
∩ C ≠ φ, A
∩ D ≠ φ, B ∩ C ≠ φ and B ∩ D ≠ φ.
Thus, the pairs of events, (A, C), (A, D), (B, C), (B, D) are not mutually exclusive
events.
Also C
∩ D = φ and so C and D are mutually exclusive events.
Example 8 A coin is tossed three times, consider the following events.
A: ‘No head appears’, B: ‘Exactly one head appears’ and C: ‘Atleast two heads
appear’.
Do they form a set of mutually exclusive and exhaustive events?
Solution
The sample space of the experiment is
S = {HHH, HHT, HTH, THH, HTT, THT, TTH, TTT}
and A = {TTT}, B = {HTT, THT, TTH}, C = {HHT, HTH, THH, HHH}
Now
A ∪ B ∪ C = {TTT, HTT, THT, TTH, HHT, HTH, THH, HHH} = S
Therefore, A, B and C are exhaustive events.
Also, A ∩ B = φ, A
∩ C = φ and B ∩ C = φ
Therefore, the events are pair-wise disjoint, i.e., they are mutually exclusive.
Hence, A, B and C form a set of mutually exclusive and exhaustive events.