INTRODUCTION TO THREE DIMENSIONAL GEOMETRY 269
12.2 Coordinate Axes and Coordinate Planes in Three Dimensional Space
Consider three planes intersecting at a point O
such that these three planes are mutually
perpendicular to each other (Fig 12.1). These
three planes intersect along the lines X′OX, Y′OY
and Z′OZ, called the x, y and z-axes, respectively.
We may note that these lines are mutually
perpendicular to each other. These lines constitute
the rectangular coordinate system. The planes
XOY, YOZ and ZOX, called, respectively the
XY-plane, YZ-plane and the ZX-plane, are
known as the three coordinate planes. We take
the XOY plane as the plane of the paper and the
line Z′OZ as perpendicular to the plane XOY. If the plane of the paper is considered
as horizontal, then the line Z′OZ will be vertical. The distances measured from
XY-plane upwards in the direction of OZ are taken as positive and those measured
downwards in the direction of OZ′ are taken as negative. Similarly, the distance
measured to the right of ZX-plane along OY are taken as positive, to the left of
ZX-plane and along OY′ as negative, in front of the YZ-plane along OX as positive
and to the back of it along OX′ as negative. The point O is called the origin of the
coordinate system. The three coordinate planes divide the space into eight parts known
as octants. These octants could be named as XOYZ, X′OYZ, X′OY′Z, XOY′Z,
XOYZ′, X′OYZ′, X′OY′Z′ and XOY′Z′. and denoted by I, II, III, ..., VIII , respectively.
12.3 Coordinates of a Point in Space
Having chosen a fixed coordinate system in the
space, consisting of coordinate axes, coordinate
planes and the origin, we now explain, as to how,
given a point in the space, we associate with it three
coordinates (x,y,z) and conversely, given a triplet
of three numbers (x, y, z), how, we locate a point in
the space.
Given a point P in space, we drop a
perpendicular PM on the XY-plane with M as the
foot of this perpendicular (Fig 12.2). Then, from the point M, we draw a perpendicular
ML to the x-axis, meeting it at L. Let OL be x, LM be y and MP be z. Then x,y and z
are called the x, y and z coordinates, respectively, of the point P in the space. In
Fig 12.2, we may note that the point P (x, y, z) lies in the octant XOYZ and so all x, y,
z are positive. If P was in any other octant, the signs of x, y and z would change
Fig 12.1
Fig 12.2