32 MATHEMATICS
(ii) If there are p elements in A and q elements in B, then there will be pq
elements in A
× B, i.e., if
n(A) = p and n(B) = q, then n(A × B) = pq.
(iii) If A and B are non-empty sets and either A or B is an infinite set, then so is
A × B.
(iv) A × A × A = {(a, b, c) : a, b, c ∈ A}. Here (a, b, c) is called an ordered
triplet.
Example
1 If (x + 1, y – 2) = (3,1), find the values of x and y.
Solution
Since the ordered pairs are equal, the corresponding elements are equal.
Therefore x + 1 = 3 and
y – 2 = 1.
Solving we get x = 2 and y = 3.
Example 2 If P = {a, b, c} and Q = {r}, form the sets P × Q and Q × P.
Are these two products equal?
Solution By the definition of the cartesian product,
P × Q = {(a, r), (b, r), (c, r)} and Q × P = {(r, a), (r, b), (r, c)}
Since, by the definition of equality of ordered pairs, the pair (a, r) is not equal to the pair
(r, a), we conclude that P × Q ≠ Q × P.
However, the number of elements in each set will be the same.
Example 3 Let A = {1,2,3}, B = {3,4} and C = {4,5,6}. Find
(i) A × (B ∩ C) (ii) (A × B) ∩ (A × C)
(iii) A × (B ∪ C) (iv) (A × B) ∪ (A × C)
Solution
(i) By the definition of the intersection of two sets, (B ∩ C) = {4}.
Therefore, A × (B ∩ C) = {(1,4), (2,4), (3,4)}.
(ii) Now (A × B) = {(1,3), (1,4), (2,3), (2,4), (3,3), (3,4)}
and (A × C) = {(1,4), (1,5), (1,6), (2,4), (2,5), (2,6), (3,4), (3,5), (3,6)}
Therefore, (A × B) ∩ (A × C) = {(1, 4), (2, 4), (3, 4)}.
(iii) Since, (B ∪ C) = {3, 4, 5, 6}, we have
A × (B ∪ C) = {(1,3), (1,4), (1,5), (1,6), (2,3), (2,4), (2,5), (2,6), (3,3),
(3,4), (3,5), (3,6)}.
(iv) Using the sets A × B and A × C from part (ii) above, we obtain
(A × B) ∪ (A × C) = {(1,3), (1,4), (1,5), (1,6), (2,3), (2,4), (2,5), (2,6),
(3,3), (3,4), (3,5), (3,6)}.