2Chemistry
In Class XI you have learnt that matter can exist in three states namely,
solid, liquid and gas. Under a given set of conditions of temperature and
pressure, which of these would be the most stable state of a given
substance depends upon the net effect of two opposing factors. These
are intermolecular forces which tend to keep the molecules (or atoms
or ions) closer, and the thermal energy, which tends to keep them apart
by making them move faster. At sufficiently low temperature, the thermal
energy is low and intermolecular forces bring them so close that they
cling to one another and occupy fixed positions. These can still oscillate
about their mean positions and the substance exists in solid state. The
following are the characteristic properties of the solid state:
(i) They have definite mass, volume and shape.
(ii) Intermolecular distances are short.
(iii) Intermolecular forces are strong.
(iv) Their constituent particles (atoms, molecules or ions) have fixed
positions and can only oscillate about their mean positions.
(v) They are incompressible and rigid.
Solids can be classified as crystalline or amorphous on the basis of the
nature of order present in the arrangement of their constituent particles.
A crystalline solid usually consists of a large number of small crystals,
each of them having a definite characteristic geometrical shape. The
arrangement of constituent particles (atoms, molecules or ions) in a crystal
is ordered and repetitive in three dimensions. If we observe the pattern in
one region of the crystal, we can predict accurately the position of particles
in any other region of the crystal however far they may be from the place
of observation. Thus, crystal has a long range order which means that
there is a regular pattern of arrangement of particles which repeats itself
periodically over the entire crystal. Sodium chloride and quartz are typical
examples of crystalline solids. Glass, rubber and many plastics do not
form crystals when their liquids solidify on cooling. These are called
amorphous solids. The term amorphous comes from the Greek word
amorphos, meaning no form.The arrangement of constituent particles
(atoms, molecules or ions) in such a solid has only short range order. In
such an arrangement, a regular and
periodically repeating pattern is observed
over short distances only. Regular patterns
are scattered and in between the
arrangement is disordered. The structures
of quartz (crystalline) and quartz glass
(amorphous) are shown in Fig. 1.1 (a) and
(b) respectively. While the two structures
are almost identical, yet in the case of
amorphous quartz glass there is no long
range order. The structure of amorphous
solids is similar to that of liquids. Due to
the differences in the arrangement of the
constituent particles, the two types of solids
differ in their properties.
1.11.1
1.11.1
1.1
GeneralGeneral
GeneralGeneral
General
CharacteristicsCharacteristics
CharacteristicsCharacteristics
Characteristics
of Solid Stateof Solid State
of Solid Stateof Solid State
of Solid State
1.21.2
1.21.2
1.2
AmorphousAmorphous
AmorphousAmorphous
Amorphous
and Crystallineand Crystalline
and Crystallineand Crystalline
and Crystalline
SolidsSolids
SolidsSolids
Solids
Fig. 1.1: Two dimensional structure of
(a) quartz and (b) quartz glass