288 CHEMISTRY
• In metallurgical processes, it is used to
reduce heavy metal oxides to metals.
• Atomic hydrogen and oxy-hydrogen
torches find use for cutting and welding
purposes. Atomic hydrogen atoms
(produced by dissociation of dihydrogen
with the help of an electric arc) are allowed
to recombine on the surface to be welded
to generate the temperature of 4000 K.
• It is used as a rocket fuel in space research.
• Dihydrogen is used in fuel cells for
generating electrical energy. It has many
advantages over the conventional fossil
fuels and electric power. It does not produce
any pollution and releases greater energy
per unit mass of fuel in comparison to
gasoline and other fuels.
9.5 HYDRIDES
Dihydrogen, under certain reaction conditions,
combines with almost all elements, except
noble gases, to form binary compounds, called
hydrides. If ‘E’ is the symbol of an element then
hydride can be expressed as EH
x
(e.g., MgH
2
)
or
E
m
H
n
(e.g., B
2
H
6
).
The hydrides are classified into three
categories :
(i) Ionic or saline or saltlike hydrides
(ii) Covalent or molecular hydrides
(iii) Metallic or non-stoichiometric hydrides
9.5.1 Ionic or Saline Hydrides
These are stoichiometric compounds of
dihydrogen formed with most of the s-block
elements which are highly electropositive in
character. However, significant covalent
character is found in the lighter metal hydrides
such as LiH, BeH
2
and MgH
2
. In fact BeH
2
and
MgH
2
are polymeric in structure. The ionic
hydrides are crystalline, non-volatile and non-
conducting in solid state. However, their melts
conduct electricity and on electrolysis liberate
dihydrogen gas at anode, which confirms the
existence of H
–
ion.
anode–
2
→ +
Saline hydrides react violently with water
producing dihydrogen gas.
2 2
+→ +
Lithium hydride is rather unreactive at
moderate temperatures with O
2
or Cl
2
. It is,
therefore, used in the synthesis of other useful
hydrides, e.g.,
8LiH + Al
2
Cl
6
→ 2LiAlH
4
+ 6LiCl
2LiH + B
2
H
6
→ 2LiBH
4
9.5.2 Covalent or Molecular Hydride
Dihydrogen forms molecular compounds with
most of the p-block elements. Most familiar
examples are CH
4
, NH
3
, H
2
O and HF. For
convenience hydrogen compounds of non-
metals have also been considered as hydrides.
Being covalent, they are volatile compounds.
Molecular hydrides are further classified
according to the relative numbers of electrons
and bonds in their Lewis structure into :
(i) electron-deficient, (ii) electron-precise,
and (iii) electron-rich hydrides.
An electron-deficient hydride, as the name
suggests, has too few electrons for writing its
conventional Lewis structure. Diborane (B
2
H
6
)
is an example. In fact all elements of group 13
will form electron-deficient compounds. What
do you expect from their behaviour? They act
as Lewis acids i.e., electron acceptors.
Electron-precise compounds have the
required number of electrons to write their
conventional Lewis structures. All elements of
group 14 form such compounds (e.g., CH
4
)
which are tetrahedral in geometry.
Electron-rich hydrides have excess
electrons which are present as lone pairs.
Elements of group 15-17 form such
compounds. (NH
3
has 1- lone pair, H
2
O – 2
and HF –3 lone pairs). What do you expect from
the behaviour of such compounds ? They will
behave as Lewis bases i.e., electron donors. The
presence of lone pairs on highly electronegative
atoms like N, O and F in hydrides results in
hydrogen bond formation between the
molecules. This leads to the association of
molecules.
Problem 9.2
Would you expect the hydrides of N, O
and F to have lower boiling points than
the hydrides of their subsequent group
members ? Give reasons.