270 BIOLOGY
lining whereas the inner pleural membrane is in contact with the lung
surface. The part starting with the external nostrils up to the terminal
bronchioles constitute the conducting part whereas the alveoli and their
ducts form the respiratory or exchange part of the respiratory system.
The conducting part transports the atmospheric air to the alveoli, clears
it from foreign particles, humidifies and also brings the air to body
temperature. Exchange part is the site of actual diffusion of O
2
and CO
2
between blood and atmospheric air.
The lungs are situated in the thoracic chamber which is anatomically
an air-tight chamber. The thoracic chamber is formed dorsally by the
vertebral column, ventrally by the sternum, laterally by the ribs and on
the lower side by the dome-shaped diaphragm. The anatomical setup of
lungs in thorax is such that any change in the volume of the thoracic
cavity will be reflected in the lung (pulmonary) cavity. Such an
arrangement is essential for breathing, as we cannot directly alter the
pulmonary volume.
Respiration involves the following steps:
(i) Breathing or pulmonary ventilation by which atmospheric air
is drawn in and CO
2
rich alveolar air is released out.
(ii) Diffusion of gases (O
2
and CO
2
) across alveolar membrane.
(iii) Transport of gases by the blood.
(iv) Diffusion of O
2
and CO
2
between blood and tissues.
(v) Utilisation of O
2
by the cells for catabolic reactions and resultant
release of CO
2
(cellular respiration as dealt in the Chapter 14).
17.2 MECHANISM OF BREATHING
Breathing involves two stages : inspiration during which atmospheric
air is drawn in and expiration by which the alveolar air is released out.
The movement of air into and out of the lungs is carried out by creating a
pressure gradient between the lungs and the atmosphere. Inspiration
can occur if the pressure within the lungs (intra-pulmonary pressure) is
less than the atmospheric pressure, i.e., there is a negative pressure in
the lungs with respect to atmospheric pressure. Similarly, expiration takes
place when the intra-pulmonary pressure is higher than the atmospheric
pressure. The diaphragm and a specialised set of muscles – external and
internal intercostals between the ribs, help in generation of such gradients.
Inspiration is initiated by the contraction of diaphragm which increases
the volume of thoracic chamber in the antero-posterior axis. The
contraction of external inter-costal muscles lifts up the ribs and the