PLANT GROWTH AND DEVELOPMENT
241
primary growth of the plants and principally
contribute to the elongation of the plants along
their axis. You also know that in dicotyledonous
plants and gymnosperms, the lateral meristems,
vascular cambium and cork-cambium appear
later in life. These are the meristems that cause
the increase in the girth of the organs in which
they are active. This is known as secondary
growth of the plant (see Figure 15.2).
15.1.2 Growth is Measurable
Growth, at a cellular level, is principally a
consequence of increase in the amount of
protoplasm. Since increase in protoplasm is
difficult to measure directly, one generally
measures some quantity which is more or less
proportional to it. Growth is, therefore,
measured by a variety of parameters some of
which are: increase in fresh weight, dry weight,
length, area, volume and cell number. You may
find it amazing to know that one single maize
root apical mersitem can give rise to more than
17,500 new cells per hour, whereas cells in a
watermelon may increase in size by upto
3,50,000 times. In the former, growth is
expressed as increase in cell number; the latter
expresses growth as increase in size of the cell.
While the growth of a pollen tube is measured
in terms of its length, an increase in surface area
denotes the growth in a dorsiventral leaf.
15.1.3 Phases of Growth
The period of growth is generally divided into
three phases, namely, meristematic, elongation
and maturation (Figure 15.3). Let us
understand this by looking at the root tips. The
constantly dividing cells, both at the root apex
and the shoot apex, represent the meristematic
phase of growth. The cells in this region are rich
in protoplasm, possess large conspicuous
nuclei. Their cell walls are primary in nature,
thin and cellulosic with abundant
plasmodesmatal connections. The cells
proximal (just next, away from the tip) to the
Shoot apical
meristem
Vascular
cambium
Vascular
cambium
Root apical
meristem
Shoot
Root
Figure 15.2 Diagrammatic representation of
locations of root apical meristem,
shoot aplical meristem and
vascular cambium. Arrows exhibit
the direction of growth of cells and
organ
Figure 15.3 Detection of zones of elongation by
the parallel line technique. Zones
A, B, C, D immediately behind the
apex have elongated most.