46 BIOLOGY
When you look around, you will observe different animals with different
structures and forms. As over a million species of animals have been
described till now, the need for classification becomes all the more
important. The classification also helps in assigning a systematic position
to newly described species.
4.1 BASIS OF CLASSIFICATION
Inspite of differences in structure and form of different animals, there are
fundamental features common to various individuals in relation to the
arrangement of cells, body symmetry, nature of coelom, patterns of
digestive, circulatory or reproductive systems. These features are used
as the basis of animal classification and some of them are discussed here.
4.1.1 Levels of Organisation
Though all members of Animalia are multicellular, all of them do not
exhibit the same pattern of organisation of cells. For example, in sponges,
the cells are arranged as loose cell aggregates, i.e., they exhibit cellular
level of organisation. Some division of labour (activities) occur among
the cells. In coelenterates, the arrangement of cells is more complex. Here
the cells performing the same function are arranged into tissues, hence is
called tissue level of organisation. A still higher level of organisation, i.e.,
organ level is exhibited by members of Platyhelminthes and other higher
phyla where tissues are grouped together to form organs, each specialised
for a particular function. In animals like Annelids, Arthropods, Molluscs,
A
NIMAL
K
INGDOM
C
HAPTER
4
4.1 Basis of
Classification
4.2 Classification of
Animals
2020-21
ANIMAL KINGDOM
47
47ANIMAL KINGDOM
Echinoderms and Chordates, organs have
associated to form functional systems, each
system concerned with a specific physiological
function. This pattern is called organ system
level of organisation. Organ systems in different
groups of animals exhibit various patterns of
complexities. For example, the digestive system
in Platyhelminthes has only a single opening
to the outside of the body that serves as both
mouth and anus, and is hence called
incomplete. A complete digestive system has
two openings, mouth and anus. Similarly, the
circulatory system may be of two types:
(i) open type in which the blood is pumped
out of the heart and the cells and tissues are
directly bathed in it and
(ii) closed type in which the blood is circulated
through a series of vessels of varying diameters
(arteries, veins and capillaries).
4.1.2 Symmetry
Animals can be categorised on the basis of their
symmetry. Sponges are mostly asymmetrical,
i.e., any plane that passes through the centre
does not divide them into equal halves. When
any plane passing through the central axis of
the body divides the organism into two identical
halves, it is called radial symmetry.
Coelenterates, ctenophores and echinoderms
have this kind of body plan (Figure 4.1a).
Animals like annelids, arthropods, etc., where
the body can be divided into identical left and
right halves in only one plane, exhibit bilateral
symmetry (Figure 4.1b).
4.1.3 Diploblastic and Triploblastic
Organisation
Animals in which the cells are arranged in two
embryonic layers, an external ectoderm and
an internal endoderm, are called diploblastic
animals, e.g., coelenterates. An undifferentiated
layer, mesoglea, is present in between the
ectoderm and the endoderm (Figure 4.2a).
Figure 4.2 Showing germinal layers :
(a) Diploblastic (b) Triploblastic
(a)
(b)
Ectoderm
Mesoglea
Endoder
m
Mesoder
m
Figure 4.1 (b) Bilateral symmetry
Figure 4.1 (a) Radial symmetry
2020-21