

Colone	PP X	PPCOlOR	oppowless			
F		CP	Cp	CP	ep	7
Phenotype 9:7	CP	CCPP	CCPp	CcPP	GePp	
(0)ourd (0)our	Cp	CCPp	CCpp	CcPp	Cepp	_
	ep	Cepp	CcPp	CePp	Cepp	
	Cp	CCPp	Cepp	~Pp	cepp	

Dominants Pistasis
White Grac
WWYY X WWYY Green. Wwyy IYu White WY wY 12:3:1 Wy M_{A} WWYY WWYY WWYY \mathcal{M}_J MMYY Wy WY WY

Inheritance

- 22 July 1822
- 1. Mendel was born in
 - (a) 17th century
 - (c) 19th century

- (b) 18th century
- (d) 8th century

- 2. Mendel was the native of
 - (a) France

(b) Sweden

(c) India

- (d) Austria
- **3.** Mendel proposed which of the following terms for hereditary units?
 - (a) Factor (determiner)

(b) Genome

(c) Genetic particle

- (d) None of these
- 4. In genetics, the use of chequer board was done by
 - (a) Mendel

(b) Correns

(c) Punnet

- (d) Darwin
- 5. In 1900 CE, three biologists independently discovered Mendel's principles. They are
 - De Vries, Correns and Tschermak
- (b) Sutton, Morgan and Bridges

(c) Avery, MacLeod and McCarty

(d) Bateson, Punnet and Bridges

- **6.** Which of the following has been used for genetic researches?
 - (a) Pisum (b) Neurospora
 - (c) E. coli (d) All of these
- 7. Organism of pure line is that which produces individuals of
 - (a) Dominant characters (b) Recessive characters
 - (d) Intermediate type
- **8.** Mendel is famous for his work on
 - (b) Drosophila
 - (c) Neurospora (d) Oenothera
- **9.** The main reason for the success of Mendel was
 - (a) Study of all the characters at the same time
 - (b) Study of one character at one time
 - (c) Study of all the plants at the same time
 - (d) Counting of plants

- (c) Genes governing eye characters.
- (d) Genes present in allosomes.
- 11. An allele is said to be dominant if
 - (a) It is expressed only in heterozygous combination.
 - (b) It is expressed only in homozygous combination.
 - (c) It is expressed in both homozygous and heterozygous condition.
 - (d) It is expressed only in second generation.
- **12.** What is the correct sequence of the following events?
 - 1. Formation of the chromosome theory of heredity.
 - 2. Experiments which proved that DNA is the hereditary material.
 - 3. Mendel's laws of inheritance—discovery.
 - (a) 1, 3 and 2 (b) 1, 2 and 3
- (c) 3, 1 a

- (d) 2, 1 and 3
- 13. When a true breeding pea plant that has yellow seeds is pollinated by a plant that has green seeds, then all the F₁ plants have yellow seeds. This means that the allele for yellow is
 - (a) Heterozygous

(a) Dominant

(c) Recessive

(d) Lethal

20		ABLES KOTA					
20.	Mendel's principle of segregation was based on the separation of alleles in the garden pea						
	during						
	(a) Pollination	(b) Embryonic development					
	(c) Seed formation	Gamete formation					
21.	Which of the following is the dominant charac	cter according to Mendel?					
	(a) Dwarf plant and yellow fruit	(b) Terminal fruit and wrinkled seed					
	(c) White testa and yellow pericarp	Green coloured pod and rounded seed					
22.	In Mendelism, the linkage was not observed d	due to					
	(a) Mutation	due to Independent assortment					
	(c) Synapsis	(d) Crossing over					
23.	Mendel's law of heredity can be explained with	th the help of					
	(c) Both mitosis and meiosis	(d) None of these					
24.	A cross between plants having RRYY and rryy	ry composition will yield plants with					
•	Round and yellow seeds	(b) Round and green seeds					
	(c) Wrinkled and yellow seeds	(d) Wrinkled and green seeds					
25.	The genotype of an individual is Rr Bb. How i	many different types of gametes will it produce					
	based on the law of independent assortment?						
	(a) 16 (b) 9	(c) 8 (d) 4					

26.	Which of the following (a) TTRR	g is heterozygous for two (b) TrRR	pairs of alleles? (c) ttrr	(d)	TrtR	DECA KO
27.	In Mendel's experiment height, etc., are referred (a) Alleles Phenotypes		wer colour, position of flo (b) Genotypes (d) All of these	ower	, pod colour,	stem XXX
28.	A cross between a hom (a) Monohybrid cross (c) Test cross	ozygous recessive and a	heterozygous plant is ca (b) Dihybrid cross (d) Back cross	alled		*
29.	Cross between F ₁ plant (a) Back cross	and recessive female pl (b) Test cross	ant is called (c) Out cross	(1)	Mutation	
30.	In F ₂ generation, a pher (a) Back cross (c) Lethality	notypic ratio of 1:1:1 RTTT	(b) Monohybrid test cross (d) Dihybrid test cross			·)

58. The below diagram shows:

59. The below diagram represents

(a) Back cross

(c) Test cross

(b) Out cross

(d) Dihybrid cross

60. The below diagram represents

(a) Dominant epistasis(c) Incomplete dominance

- (b) Recessive epistasis
- (d) Co-dominance

61. Identify A to E in this figure.

A: Petal; B: Stigma; C: Anther; D: Stamen; E: Carpel

(b) A: Anther; B: Petal; C: Stigma; D: Carpel; E: Stamen

(c) A: Carpel; B: Stamen; C: Anther; D: Stigma; E: Petal

(d) A: Stigma; B: Petal; C: Stamen; D: Anther; E: Carpel

62. Identify A, B, C and D in this figure?

- (a) A: Female parent; B: Removal of anthers (Emasculation); C: Transfer of pollen (Pollination); D: Male parent
- (b) A: Male parent; B: Female parent; C: Removal of anthers (Emasculation); D: Transfer of pollen (Pollination)
- (c) A: Removal of anthers (Emasculation); B: Female parent; C: Transfer of pollen (Pollination); D: Male parent

A: Female parent; B: Male parent; C: Transfer of pollen (Pollination); D: Removal of anthers (Emasculation)

97. The below figure possess which of the following sex chromosomes?

two similar chomosomes Mall 22

(a) XX

(b) XY

(d) ZW