

Experiments to prove which is the genetic material...

1

GRIFFITH'S TRANSFORMING PRINCIPLE EXPERIMENT

- Frederick Griffith (1928) used mice & Streptococcus pneumoniae.
- Streptococcus pneumoniae has 2 strains:
 - Smooth (S) strain (Virulent): Has polysaccharide mucus coat. Cause pneumonia.
 - Rough (R) strain (Non-virulent): No mucus coat. Do not cause Pneumonia.

1

GRIFFITH'S TRANSFORMING PRINCIPLE EXPERIMENT

4 Mill

- R-strain → Inject into mice → Mice live
- 3. S-strain (Heat killed) → Inject into mice → Mice live
- 4. S-strain (Heat killed) + R-strain (live) → Inject into mice → Mice die

GRIFFITH'S

TRANSFORMING PRINCIPLE EXPERIMENT

He concluded that some 'transforming principle' transferred from heat-killed S-strain to R-strain. It enabled R-strain to synthesize smooth polysaccharide coat and become virulent. This is due to the transfer of genetic material.

Chemical horre desect.

BIOCHEMICAL CHARACTERIZATION OF TRANSFORMING PRINCIPLE

MacLeod & Maclyn McCarty
worked to determine the
biochemical nature of
'transforming principle' in
Griffith's experiment.

They purified biochemicals (proteins, DNA, RNA etc.) from heat killed S cells using suitable enzymes.

2

BIOCHEMICAL CHARACTERIZATION OF TRANSFORMING PRINCIPLE

They discovered that

- ✓ Digestion of protein & RNA (using Proteases & RNases) did not affect transformation. So, transforming substance was not a protein or RNA.
- Digestion of DNA with DNase inhibited transformation. It means that DNA caused transformation of R cells to S cells, i.e. DNA was the transforming principle.

3 (Tag)

HERSHEY-CHASE
EXPERIMENT
(BLENDER
EXPERIMENT)

Hershey & Chase grew some bacteriophage viruses on a medium containing radioactive phosphorus (P32) and some others on medium containing radioactive sulphur (S35).

Viruses grown in P³² got radioactive DNA because only DNA contains phosphorus. Viruses grown in S³⁵ got radioactive protein because protein contains sulphur.

> Eschoralia

3

HERSHEY-CHASE EXPERIMENT (BLENDER EXPERIMENT)

- These preparations were used separately to infect E. coli.
- After infection, the E. coli cells were gently agitated in a blender to remove the virus particles from the bacteria.

Then the culture was centrifuged to separate lighter virus particles from heavier bacterial cells.

3

HERSHEY-CHASE EXPERIMENT (BLENDER EXPERIMENT)

- Bacteria infected with viruses having radioactive DNA were radioactive. i.e., DNA had passed from virus to bacteria.
- Bacteria infected with viruses having radioactive proteins were not radioactive. i.e., proteins did not enter the bacteria from the viruses.

This proves that DNA is the genetic material.

Веренеу с

HERSHEY-CHASE EXPERIMENT (BLENDER EXPERIMENT)

PROPERTIES OF GENETIC MATERIAL

A genetic material must have the following properties:

PROPERTIES OF GENETIC MATERIAL

Reasons for stability
(less reactivity) of DNA

• Double stranded

• Presence of
• Presence of Uracil

Absence of 2'-OH in sugar

thymine

• Presence of 2'-OH in sugar

Stocpto coccus premone (phemonia) 9 S-Sham Ronal Smooth. Non-Pathragen Von- vidulant. Polys amaride Out Mensous

Holsher & Mare Blenderis exp 9 nfection Blending entoifueation